A Summary of GDS Ship Engine Room Simulator (ERS) charateristics to fit into your training program

With our product, certified by the Nippon Kaiji Kyokai (Class NK) as a Class A (Full Mission) Engine Room Simulator, our purpose is to ensure that the instructors can efficiently utilize this training environment in their Maritime Education and Training (MET) programs and that the trainees can have a productive training.

Developed by GDS Engineering R&D; our product called Ship Engine Room Simulator (SERS);

  • Meets IMO STCW 2010 requirements (with Manila Amendments).
  • Supports training programs using IMO Model Course 2.07 (2017 Edition).
  • Certified by Class NK for meeting both IMO STCW 2010 and Model Course 2.07.
  • The simulator is the digital twin model of a real ship (ref. to User Manuals for complete references and details)
  • Configurable for an individual training study on a Workstation/PC
  • Configurable for group studies with distributed system configuration using distributed computers and large touch-screen panels as well as association of hardware consoles and panels.
  • Provides automated training reports.
  • Includes high voltage training functions
  • Simulates all engine room machinery and systems with over 50 Graphical User Interface (GUI) Panels.
  • All systems are interfaced with all engine room parameters, any change in any parts of the systems is immediately affect the other systems, as in reality!
  • Emphasizes all aspects of the electrical operations with realistic functions.
  • Easy graphical user interfaces that considerably decrease the time for learning and allowing instructors to directly move on to the training objectives.
  • Includes 5 User Manuals, allowing to apply the manuals to training programs directly.
  • Includes Exercise Workbooks for students to come to the simulator center with their study books. When books and user manuals are incorporated, it provides a similar work studies in real ships.
  • Exercise Book I is to use in the Operational Level of STCW 2010 training / competency levels. There are more than 10 example exercises are provided; already meeting the STCW objectives.
  • Exercise Book II is to use in the Management Level of STCW 2010 training/ competency levels. There are more than 10 example exercises are provided; already meeting the STCW objectives.
  • Engine room systems are simulated with high resolution rendered components providing easily readable GUIs on screens, which considerably decrease the learning time and moving on to the training subjects.

For more information visit: https://www.globaldynamicsystems.com/

or watch our YOUTUBE CHANNEL for more information with some example videos.

Would you Like to Capture Our Vision in Simulator Development?

GDS Engineering R&D is a research and development company, established by the academicians employed at Istanbul Technical University Maritime Faculty, Tuzla, Istanbul. GDS SERS Development Team has been utilizing engine room simulators since 2001, every year for training of marine engineering students with the following two engineering courses:

ERS I Operational Level Simulator Course: This course is for STCW Operational Level Proficiency Training after completing other Operational Level Courses at 4-year-university level. It is 4 hrs a week continuing for 14 weeks per semester. Each student must take this course to be eligible for long term training onboard a ship.

ERS II Management level Simulator Course: This course is to satisfy the proficiency levels for Management Level. It is 3 hours for 14 weeks and each student must complete the onboard training and then after completing this class for graduation.

Effect of Draft Change in the Ship Main Engine Performance Parameters IMO Model Course 2.07, IMO, STCW 2010, Management Level Training Exercices, Marine Engineering Education and Training, Maritime. GDS Engineering R&D, SERS, Trademark

Through using simulators in both of these courses since 2001, we gained a good level of expertise on the use of simulators in Maritime Education & Training. Our team has also provided Training of Trainers courses IMO Model Courses 6.09 and 6.10. Some of our team members provided on site training at other Turkish institutions and became experienced on using simulators developed by various manufacturers.

Experienced in academic, engineering, and simulator courses, we have started describing a new simulator, aiming to provide an engine room simulator with the following important characteristics:

  • Reduction of Learning Time of the Software to Focus on Engine Room Systems Training:
    • Having different mouse key assignments or keyboard shortcuts in a simulator for various software functions and controls make the software much more complex to use and that affect the training objectives negatively. Therefore;
    • SERS provide a much less complex user interface allowing trainees focus on the professional tasks for “running the engine room systems” rather than “running the simulator.”
    • All GUI panels are easily displayed or closed:

“1-Click” Approach for ease of use:

  • All sysems are operated with a left mouse click.
  • All software functions are activated with a left mouse click.
  • All selections are made with a left mouse click.
  • No hidden functions or keys to use for activating a specific panel.

Fidelity and Realism

    • Having a more accurate approach on how to display and how to operate the systems and components.
    • Realistic functionality of pumps, compressors, engines, etc. with mathematical modeling reflecting the realistic time durations and process dynamics.
    • Realistic remote and local control for the pumps and compressors.
    • Realistic graphical user interface for electrical system (Circuit Breakers, Remote Panels, Synchronization Panel, etc.)
    • Piping and Instrumentation Diagram (P&ID) objects, such as valves, are designed and shown in accordance with the respective international standards. Also, real engine rooms are studied to understand and display the controls, valves, and similar objects with a more understandable object design.
    • Pipe colors are selected to fit to the international standards. This provides a more comprehensive maritime education approach and ensures enough practice opportunity for diagram reading in the real engine room.
    • Components are created with various drawing and design software packages, then they are animated for better understanding, and better on-off state indications. For example, trainee could understand a pump is turning and could see there is a flow in a pipe with both color change and observed parameters.
    • Enough/necessary parameters displayed to understand the engineering principles.
    • Emphasis on Safety Systems (CO2 Fixed Fire Installation system is included as a separate panel)
    • Emphasis on Upcoming Regulations or Technology (Inclusion of ME Denoxification system as a separate panel).
    • Basic sounds (alarms and engine sounds) are implemented. Alarms are implemented appropriately as in the real environment with SILENCE, ACKNOWLEDGE and RESET buttons.

Unique Assessment Features

SERS provides direct evaluation methods with objective evidence of training with the following training outputs:

  • A text based training report generated for each trainee for each training session.
  • Screen captures generated for each user action and recorded in a historic time order, allowing to monitor and display the complete flow of the trainee actions.
  • Instructor monitoring and reaction time display and record for each trainee.
  • Trainee tools to easily record and maintain the training records.
  • More Accurate Philosphy is developed for use of SERS for a more Efficient and Realistic “Team Management” Training
    • “Repeating all functions in distributed computers” approach cause students tend to complete all training functions from one computer only. However;
    • SERS architecture allow for distributing panels to different units without repeating. Student must complete the task from its designated location.

TÜBİTAK Projesi ile Dalga Enerjisinden Elektrik Üretilecek

AQUA VISION ENERGY firması tarafından TÜBİTAK projesi olarak geliştirilen “Açık Deniz ve Okyanus Dalga Enerjisi Dönüştürücü Sistemin Geliştirilmesi ve Prototip Üretimi” adlı çalışmada sona gelindi.

TÜBİTAK desteği ile off-shore (açık deniz) dalga jeneratörü geliştiren Sayın Gemi Makineleri İşletme Mühendisi Özer Çakır’ın cihazının ileri testleri İstanbul Teknik Üniversitesi Denizcilik Test Uygulama ve Araştırma Merkezi (İTÜ DETAM) Tuzla yerleşkesinde gerçekleştirildi. Teknolojinin 2 yıl içerisinde ticari kullanıma girebileceği bilgisini veren Çakır, geliştirdiği teknolojinin dünyadaki rakiplerine kıyasla çok daha kısa sürede kendini amorti edebileceği bilgisini verdi.

Aqua Vision - Deniz Dalgasından Elektrik Enerjisi Üretimi Özer Çakır
Dalga Enerjisi
İTÜ Denizcilik Fakültesi
Marine Equipment Test Center
İTÜ Denizcilik Test Uygulama ve Araştırma Merkezi (İTÜ DETAM)
İTÜ Denizcilik Fakültesi’de Aqua Vizyon Enerji sistemininin testlerine başlangı. görüntüsü.

25 yıldır okyanus aşırı taşımacılık yapan gemilerde baş mühendis olarak çalışan, Gemi Makineleri İşletme Mühendisi Özer Çakır, dalga enerjisini elektrik enerjisine çeviren bir teknoloji geliştirdi.

Sabah gazetisine röpörtaj veren Özer Çakır, “Dalga enerji yoğunluğu rüzgara göre 2 kat, güneş enerjisine göre 10 kat daha yoğundur. Rüzgar ve güneş enerjisi yıllık kullanım oranı yüzde 30-35 iken yılda ortalama 120-130 gün yararlanılabilir. Dalga enerjisinin yıllık kullanım oranı yüzde 80-90 olup yılda ortalama 300-320 gün yararlanılabilir. Enerji halısı adını verdiğimiz sistemimiz, çalışma döngüsünde emisyon üretmez, ürettiği 13 KWH enerji için çevreye 1 ağacın bir günlük katkısına eş değer katkı sağlar. Enerji halısı 1 KW enerji için güneş panellerine göre onda 1, rüzgar türbinlerine göre de onda 5 oranında daha az bir alana ihtiyaç duyar” dedi. 11.11.2021 tarihli SABAH gazetesi haberi için tıklayınız.

MAVİ VATANDAN ENERJİ ALABİLİRİZ

Dalga enerjisinin rüzgar ve güneş enerjisine nazaran çok daha yoğun bir potansiyele sahip olduğunu belirten Çakır, “Ülkemizde yerleşim alanlarının dışında kalan 1652 kilometrelik sahil şeridinde ve kendi karasularımızda, mavi vatan sathında, yerli ve milli bir tasarım ile geliştirilen çevrim sistemimiz, kendi denizlerimizdeki enerjiyi kullanılabilir hale getirecektir.

Ozer Cakır Gemi Makineleri İşletme Mühendisi Aqua Vision Energy GDS Engineering R&D
Gemi Makineleri İşletme Mühendisi Özer Çakır

Gemi Makineleri İşletme Mühendisi Özer Çakır‘ın AQUA VİZYON ENERJİ firmasındaki bu çalışmasına;

Gemi Makineleri İşletme Mühendisi Adem Güleryüz dayanımlı mekanik üretimler, entegrasyon ve testler konusunda,

Elk. Elektronik Müh. Serkan Sezen ve Fuat Kılıç, sistem elektrik ve kontrol konularında,

Gemi Makineleri İşletme Mühendisi Doç. Dr. Alper Kılıç, deniz yapıları konusunda, ve

İTÜ Öğretim Üyesi ve İTÜ DETAM Merkez Müdürü Dr. İsmail Çiçek, optimizasyon ve verim konularında

projeye destek vermişlerdir.

Özer Çakır Bey’i başarısından dolayı tebrik eder, sanayi uygulamalarına örnek olması ve projenin başarılı bir şekilde hayata geçirilmesini dileriz.

Dr. İsmail Çiçek, İTÜ DETAM, Merkez Müdürü
İTÜ Denizcilik Fakültesi kampsündeki testler esnasında bir görüntü

PROJE KÜNYESİ

  • Proje Adı: Açık Deniz ve Okyanus Dalga Enerjisi Dönüştürücü Sistemin Geliştirilmesi ve Prototip Üretimi
  • Proje Türü: TÜBİTAK Projesi (1507), 2020-2021
  • Proje Yürütücüsü: Özer Çakır, Gemi Makineleri İşletme Mühendisi

PROJE ÖZETİ

Dalga enerjisi rüzgar ve güneş enerjisine nazaran çok daha yoğun bir potansiyele sahiptir. Ülkemizdeki dalga enerjisi potansiyeli kullanımı ile, yerleşim alanlarının dışında kalan 1652 kilometrelik sahil şeridi ve karasularımızda, mavi vatan sathında, yerli ve milli bir tasarım ile geliştirilen çevrim sistemi, Türkiye denizlerimizdeki enerjiyi kullanılabilir hale getirecektir.

Fikir, Proje Yürütücüsü Gemi Makineleri İşletme Mühendisi Sayın Özer Çakır tarafaından düşünülmüş ve projeye dönüştürülmüştür. Proje ile önerilen teknoloji dünyadaki rakiplerine kıyasla daha avantajlı olup sistemin öncelikle kendi sektöründeki diğer sistemlerin amorti süreleri ile karşılaştırması yaılacaktır. Sektörde kendini en kısa sürede amorti eden sistem yaklaşık 12 yıl ile Oscillating Water Columns olup diğer sistemler için bu süre daha da fazladır. Bu sistem ise 7-8 yıllık bir sürede kendini amorti edebileceği şekilde tasarlanıp optimize edilmiştir.

Rakiplerinden farklı olarak sistem, deniz yüzeyinde dalgaların gücüne ve hareketlerine bir arayüz olarak kullanılmış, bu arayüz sayesinde dalga enerjinin döngüsü sağlanmıştır. Yüzey üzerindeki tüm dalga etkileri az kayıp ile enerjiye çevirebilebilmesi için optimizasyon çalışması yapılmış, dönüştürebilen enerji miktarı rakiplerden daha fazla olduğu gösterilmiştir. Sistemi oluşturan malzeme maliyetlerinin düşük olması, sistemin toplam kurulum maliyetini de rakiplerine göre avantajlı hale getirmiştir. Sistemin tasarımsal özelliği sayesinde beklenmedik dalga etkilerine karşı dayanımlı olması istikrarlı ve düzenli çalışması sağlanmıştır. Ayrıcai diğer enerji kayaklarına bakıldığında, güneş pilleri için amorti süresinin 5 yıl civarında, rüzgar türbinleri için ise 7 yıl civarında olduğu düşünülerek çalışılmıştır.

Dr. İsmail Çiçek

Dr İsmail Çiçek 1990 yılında İstanbul Teknik Üniversitesi (İTÜ) Gemi Makineleri İşletme Mühendisliği Bölümünden mezun oldu. Akademik dünya ve endüstrinin değişik alanlarındaki çalışmalarıyla geniş tecrübe sahibi olan İsmail Çiçek, Texas Tech Üniversitesi Makine Mühendisliği Bölümünden 1995’de Yüksek Lisans 1999’da doktora diplomalarını aldı. Dr Çiçek yüksek lisans çalışmasında dizayn ve kontrol sistemleri, doktora çalışmasında ise mekanik titreşimler ve kontrol sistemleri konularında çalışmalar yaptı.

Dr İsmail Çiçek 1999-2003 yılları arasında İTÜ Denizcilik Fakültesi Gemi Makineleri İşletme Mühendisliği Bölümünde Öğretim Üyesi ve Bölüm Başkan Yardımcısı olarak görev yaptı. Bu süre içerisinde Dr Çiçek İTÜ Simülatör Merkezinin kurulması, International Association of Maritime Universities (IAMU) birliğinin oluşturulması, ve The State University of New York (SUNY) ile İTÜ Denizcilik Fakültesi arasında çift diplomalı lisans programının gerçekleştirilmesi çalışmalarında bulundu.

1997 yılından günümüze Dr. İsmail Çiçek ABD savunma sektöründe proje yapan şirketlerde ve ABD Hava Kuvvetleri Komutanlığı bünyesinde değişik program ve projelerde uzun yıllar (toplam 15 yıl) mühendis ve lider olarak çalışmalar yürüttü. Dr. Çiçek’in savunma sanayi deneyimi Coğrafi Bilgi Sistemlerini kullanan İnsansız Hava Aracı ve Sistemleri geliştirilmesi ve US Marine Corps’a teslimi, sabit kanat uçakların modernizasyonu (C-5, C-17, C-130 E/H/J, vb), askeri cihazlarının uçak, hava ve deniz araçlarında kullanılabilmesi için ortama uyumluluk testleri, insansız hava araçları için dizel motor geliştirilmesi ve uygulanması gibi önemli çalışmaları içermektedir.

Dr Çiçek, Raytheon ve Texas Tech Üniversitesi işbirliği ile hazırlanan Sistem Mühendisliği doktora programında Entegre Ürün Verifikasyon ve Validasyon dersini verdi. Titiz, enerjik ve mükemmel takım çalışması göstergeleri dolayısıyla İsmail Çiçek’e; Terra Health tarafından, 2009 yılında Mükemmel Mühendislik ve 2010 yılında Müşteriye Hizmette Üstünlük ödülleri, ABD Hava Kuvvetleri Komutanlığı’nca çok sayıda ödül ve teşekkür mektupları takdim edildi.
Bir çok bilimsel ve mühendislik yayınları olan ve uluslararası konferans etkinlikleri bulunan Dr. İsmail Çiçek halen ASTM, ASME, IEEE ve ISO gibi uluslararası profesyonel kuruluşlarda aktif üye olup, askeri ve sivil standartlar geliştiren komitelerde çalışmalar yapmaktadır. Dr. Çiçek’in uluslararası sivil ve askeri standartlar konusunda uygulamalı tecrübeleri bulunmaktadır.

Dr. İsmail Cicek, 2012 yılından itibaren İTÜ Denizcilik Fakültesi’nde Öğretim Üyesi olarak görev yapmakta, Otomatik Kontrol Sistemleri, Gemi Makine Dairesi Simülatörleri, Gemi Kontrol Sistemleri, Mekanik Titreşimler ve benzeri dersler vermektedir.  Dr. İsmail Çiçek Üniversite-Sanayi işbirliklerine önem vermektedir, bu sebeple de IMSO, TÜLOMSAŞ, MILPER, FEMSAN, ve benzeri kurum ve kuruluşlar ile birlikte çalışmalar da yapmıştır.