Ship Engine Room Simulator (ERS) SERS GDS Engineering R&D IMO STCW 2010, Engine Performance, Main Diesel Engine, Marine, Maritime, IMO Model Course 2.07. Certified by ClassNK. ITU Maritime Faculty. Yıldız Technical University. Competencies. Operation and Management Level. Education and Training. Assessment of Marine Engineers. Troubleshooting with Fault Tree Scnearious and Analysis Reporting. Objective Assessment. Nippon Kaiji Kyokai.High Voltage Training Functions 6600 VAC. Ship Propulsion Systems. Maritime Education and Training. Main Engine Performance. Sunken Diagrams. Energy Efficiency. Marine Engineering. Effect of Draft Change in the Ship Main Engine Performance Parameters. Management Level Training Exercices, Marine Engineering Education and Training. SERS Trademark

Capture GDS Vision in the Engine Room Simulator Development

GDS Engineering R&D is a research and development company, established by the academicians employed at Istanbul Technical University Maritime Faculty, Tuzla, Istanbul. GDS SERS Development Team has been utilizing engine room simulators since 2001, every year for training of marine engineering students with the following two engineering courses:

ERS I Operational Level Simulator Course: This course is for STCW Operational Level Proficiency Training after completing other Operational Level Courses at 4-year-university level. It is 4 hrs a week continuing for 14 weeks per semester. Each student must take this course to be eligible for long term training onboard a ship.

ERS II Management level Simulator Course: This course is to satisfy the proficiency levels for Management Level. It is 3 hours for 14 weeks and each student must complete the onboard training and then after completing this class for graduation.

Effect of Draft Change in the Ship Main Engine Performance Parameters IMO Model Course 2.07, IMO, STCW 2010, Management Level Training Exercices, Marine Engineering Education and Training, Maritime. GDS Engineering R&D, SERS, Trademark

Through using simulators in both of these courses since 2001, we gained a good level of expertise on the use of simulators in Maritime Education & Training. Our team has also provided Training of Trainers courses IMO Model Courses 6.09 and 6.10. Some of our team members provided on site training at other Turkish institutions and became experienced on using simulators developed by various manufacturers.

Experienced in academic, engineering, and simulator courses, we have started describing a new simulator, aiming to provide an engine room simulator with the following important characteristics:

  • Reduction of Learning Time of the Software to Focus on Engine Room Systems Training:
    • Having different mouse key assignments or keyboard shortcuts in a simulator for various software functions and controls make the software much more complex to use and that affect the training objectives negatively. Therefore;
    • SERS provide a much less complex user interface allowing trainees focus on the professional tasks for “running the engine room systems” rather than “running the simulator.”
    • All GUI panels are easily displayed or closed:

“1-Click” Approach for ease of use:

  • All sysems are operated with a left mouse click.
  • All software functions are activated with a left mouse click.
  • All selections are made with a left mouse click.
  • No hidden functions or keys to use for activating a specific panel.

Fidelity and Realism

    • Having a more accurate approach on how to display and how to operate the systems and components.
    • Realistic functionality of pumps, compressors, engines, etc. with mathematical modeling reflecting the realistic time durations and process dynamics.
    • Realistic remote and local control for the pumps and compressors.
    • Realistic graphical user interface for electrical system (Circuit Breakers, Remote Panels, Synchronization Panel, etc.)
    • Piping and Instrumentation Diagram (P&ID) objects, such as valves, are designed and shown in accordance with the respective international standards. Also, real engine rooms are studied to understand and display the controls, valves, and similar objects with a more understandable object design.
    • Pipe colors are selected to fit to the international standards. This provides a more comprehensive maritime education approach and ensures enough practice opportunity for diagram reading in the real engine room.
    • Components are created with various drawing and design software packages, then they are animated for better understanding, and better on-off state indications. For example, trainee could understand a pump is turning and could see there is a flow in a pipe with both color change and observed parameters.
    • Enough/necessary parameters displayed to understand the engineering principles.
    • Emphasis on Safety Systems (CO2 Fixed Fire Installation system is included as a separate panel)
    • Emphasis on Upcoming Regulations or Technology (Inclusion of ME Denoxification system as a separate panel).
    • Basic sounds (alarms and engine sounds) are implemented. Alarms are implemented appropriately as in the real environment with SILENCE, ACKNOWLEDGE and RESET buttons.

Unique Assessment Features

SERS provides direct evaluation methods with objective evidence of training with the following training outputs:

  • A text based training report generated for each trainee for each training session.
  • Screen captures generated for each user action and recorded in a historic time order, allowing to monitor and display the complete flow of the trainee actions.
  • Instructor monitoring and reaction time display and record for each trainee.
  • Trainee tools to easily record and maintain the training records.
  • More Accurate Philosphy is developed for use of SERS for a more Efficient and Realistic “Team Management” Training
    • “Repeating all functions in distributed computers” approach cause students tend to complete all training functions from one computer only. However;
    • SERS architecture allow for distributing panels to different units without repeating. Student must complete the task from its designated location.
GDS Systems Engineering Training Programs. Online Training. Training helps reduce your design and operational risks. We provide MIL-STD-810H, RTCA-DO-160, Vibration and Shock, FAA Requirements Management courses. by Dr Ismail Cicek and a CVE certified by EASA. Tailoring of the MIL-STD-810H test methods and procedures. EUT. Equipment Under Test. Online Classes. US based intructor. US DOD. EASA. FAA. NASA. Miliary Stanrdards. Askeri Test Standartları. Çevresel Test Standart Eğitimi. Eğitim. Acceleration Testing. Aircraft Systems. RTCA-DO-160. Crash Hazard. Korozyon Testleri. Corrosion Tests.

MIL-STD-810H: Training on Environmental Testing of Military Equipment | Online/Live | International (EN)

March 4, 2022 @ 8:00 am March 6, 2022 @ 12:30 pm CET

GDS Systems Engineering Training Programs. Online Training. Training helps reduce your design and operational risks. We provide MIL-STD-810H, RTCA-DO-160, Vibration and Shock, FAA Requirements Management courses. by Dr Ismail Cicek and a CVE certified by EASA. Tailoring of the MIL-STD-810H test methods and procedures. EUT. Equipment Under Test. Online Classes. US based intructor. US DOD. EASA. FAA. NASA. Miliary Stanrdards. Askeri Test Standartları. Çevresel Test Standart Eğitimi. Eğitim. Acceleration Testing. Aircraft Systems. RTCA-DO-160. Crash Hazard. Korozyon Testleri. Corrosion Tests.

MIL-STD-810H, US Department Of Defence Test Method Standard
Environmental Engineering Considerations and Laboratory Tests

Training Schedule and Execution Type
  • Training Type: International / Online
  • Satus: Seats are avaiable now.
  • Online training using ZOOM.
  • Led by a live, U.S. based instructor (Dr Ismail Cicek) (PDF) (Download PDF)
  • A usual 2.5 days of training schedule is as follows:
      • 1st Day: 09:00 – 13:00
    • 2nd Day: 09:00 – 17:00 (Lunch Break between 12:30 and 13:30)
    • 3rd Day: 09:00 – 17:00 (Lunch Break between 12:30 and 13:30)
    • Time zone: Central Daylight Time (US CDT, UTC-5)
  • Ending time may vary+/-30 minutes depending on the length of the discussions.
  • Course Material: English
  • Comm. Language: English
  • Material: Registration includes all presentations and additional material (English) shared before the class.
  • Attandance: The link for online class is distributed to registered trainees upon registration.
  • Attendees will receive a Training Certificate.
  • Training includes knowledge check quizzes, a competition type fun way or learning.
Training Schedule and Execution Type
  • Training Type: International / Online
  • Satus: Seats are avaiable now.
  • Online training using ZOOM.
  • Led by a live, U.S. based instructor (Dr Ismail Cicek) (PDF) (Download PDF)
  • A usual 2.5 days of training schedule is as follows:
      • 1st Day: 09:00 – 13:00
    • 2nd Day: 09:00 – 17:00 (Lunch Break between 12:30 and 13:30)
    • 3rd Day: 09:00 – 17:00 (Lunch Break between 12:30 and 13:30)
    • Time zone: Central Daylight Time (US CDT, UTC-5)
  • Ending time may vary+/-30 minutes depending on the length of the discussions.
  • Course Material: English
  • Comm. Language: English
  • Material: Registration includes all presentations and additional material (English) shared before the class.
  • Attandance: The link for online class is distributed to registered trainees upon registration.
  • Attendees will receive a Training Certificate.
  • Training includes knowledge check quizzes, a competition type fun way or learning.

Training Registration Request Form

Please fill out the following form for asking your question or with a registration request. Thank you for your interest in our training programs.

    Online Training via ZOOM

    ZOOM Link and Training Material will be shared with the registrants
    View Venue Website
    Ship Engine Room Simulator (ERS) SERS GDS Engineering R&D IMO STCW 2010, Engine Performance, Main Diesel Engine, Marine, Maritime, IMO Model Course 2.07. Certified by ClassNK. ITU Maritime Faculty. Yıldız Technical University. Competencies. Operation and Management Level. Education and Training. Assessment of Marine Engineers. Troubleshooting with Fault Tree Scnearious and Analysis Reporting. Objective Assessment. Nippon Kaiji Kyokai.High Voltage Training Functions 6600 VAC. Ship Propulsion Systems. Maritime Education and Training. Main Engine Performance. Sunken Diagrams. Energy Efficiency. Marine Engineering. Effect of Draft Change in the Ship Main Engine Performance Parameters. Management Level Training Exercices, Marine Engineering Education and Training. SERS Trademark

    A new and modern Engine Room Simulator (ERS) has recently been certified by Class NK: It Meets the Online Training Requirements of IMO STCW 2010 and Model Course 2.07

    Ship Engine Room Simulator (Ship ERS or SERS™) is certified to meet both IMO STCW 2010 and IMO Model Course 2.07 Exercise Requirements

    SERS™ User Manuals

    SERS™ is provided with a total of seven (7) user manuals, student exercise workbooks, and documents as complementary to the training practices. All these documents are supplied with a license purchase. Using the SERS™ document set in classroom study also promotes the real-world engine room best work practices of using manuals in operation and management of the engine room machinary and systems.

    SERS User Manual Vol I (Software Description) describes the SERS software with the SERS Graphical User Interface (GUI) Panels accessed from the SERS Main Graphical User Interface (GUI) Panel.

    SERS User Manual Volume II (Engine Room Operations) includes the operational instructions on how to operate the engine room systems and machinery using the SERS. The training institutions can directly use the contents of this manual in their training procedures. There are also exercises included for use by the trainees for reporting.

    SERS User Manual Vol III (Installation & Configuration) describes the installation and the configuration of the software and hardware items. Using this manual, SERS can be configured to run as a Distributed System and the touch screen hardware panels can be assigned to desired GUI panels using the configuration files.

    SERS User Manual Volume IV (Instructor’s Manual) includes guides, information, and additional exercise tips for the instructors to utilize SERS in their trainings according to a specific training objective.

    Student Exercise Workbooks per IMO Model Course 2.07

    Student Exercise Workbook, Volume I: We are already using the simulator in our own training programs and developed Volume I with exercies that meets each objectives of the IMO Model Course 2.07. Volume I exercises includes the Engine Room Operational Level training objectives.

    Student Exercise Workbook,Volume II: Volume II exercises includes the Engine Room Management Level training objectives in accordance with IMO Model Course 2.07.

    SERS Philosophy Document provides how SERS may be used in a curricula or in engine room simulator training programs. It provides guides for selecting the configuration of the SERS according to the training objectives.

    Students can Complete and Report the IMO Model Course 2.07 Exercises with Online Training

    IMO Model Course Engine-Room Simulator 2.07 (2017 Edition)

    • Familiarization
    1. Familiarization
      1.1 Plant arrangement
      1.2. Instrumentation
      1.3. Alarm system
      1.4. Controls
    • Operation of plant machinery
      2.1. Operational procedures
      2.2 Operate main and auxiliary machinery and
      systems
      2.3. Operation of diesel generator 20
      2.4. Operation of steam boiler
      2.5. Operation of main engine and associated
      auxiliaries
      2.6. Operation of steam turbo generator
      2.7. Operation of fresh water generator
      2.8. Operation of pumping system
      2.9. Operation of oily water separator
      2.10. Fault detection and measures
    • Maintain a safe engineering watch 19
      3.1. Thorough knowledge of principles to be observed in keeping an engineering watch
      3.2. Safety and emergency procedures; changeover of remote/automatic to local control of all systems
      3.3. Safety precautions to be observed during a watch and immediate actions to be taken in the event of fire or accident, with particular reference to oil systems
      3.4. Knowledge of engine room resource management principles
    • Operate electrical, electronic and control systems
      4.1. Operation of main switch board
      4.2. High-voltage installations
    1. Manage operation of electrical and electronic……

    Click here to read more.

    Download Brochure [PDF]

    We are looking for country/area representatives!

    Send your requests to GDS Customer Desk @
    Email: info@GlobalDynamicSystems.com
    Ph: +90 (546) 585-3969

    Engine Room Simulator (ERS), IMO Model Course 2.07, IMO STCW 2010, Class Certificate, Marine Engineering Training & Evaluation
    Line Up - ME Fresh Water Cooling System IMO STCW 2010 Training, IMO Model Course 2.07. Prevent Maritime Accidents. Training is Important. Marine Engineering Training Products, Ship Engine Room Simulator, Ship ERS or simply the SERS, provided by GDS Engineering R&D. Cost Reduction. Covid-19. Virtual Systems. Digital Twin. Industry 4.0. Maritime 4.0. Denizcilik 4.0. Engine Room 4.0.
    Line Up - ME Fresh Water Cooling System IMO STCW 2010 Training, IMO Model Course 2.07. Prevent Maritime Accidents. Training is Important. Marine Engineering Training Products, Ship Engine Room Simulator, Ship ERS or simply the SERS, provided by GDS Engineering R&D.
    Energy Management Exercise with GDS Ship ERS (SERS) iaw IMO Model Course 2.07, IMO STCW 2010 (with Manila Amendments). Heat Transfer. Ship's Main Engine. ME Energy. Energy Reduction. System Troubleshooting. Class NK certified Engine Room Simulator.
    Ship Engine Room Simulator Electrical Systems IMO STCW 2010 Model Course 2.07, with High Voltage Training, IMO STCW Appendix-A (2/2) Table A-III/6
    Effect of Draft Change in the Ship Main Engine Performance Parameters IMO Model Course 2.07, IMO, STCW 2010, Management Level Training Exercices, Marine Engineering Education and Training, Maritime. GDS Engineering R&D, SERS, Trademark
    Ship Engine Room Simulator ERS Bow Thrustor IMO STCW 2010 Model Course 2.07
    Ship Electrical Systems Engine Room Simulator Sample GUI Screens IMO STCW 2010 Containership
    Ship Engine Room Simulator Compressed Air System Electrical Systems IMO STCW 2010 Model Course 2.07
    Ship Engine Room Simulator Circuit Breakers Electrical Systems IMO STCW 2010 Model Course 2.07
    Ship Engine Room Simulator TM
    SERS Main GUI – Industry Maritime 4.0 Digital Twin Example
    Line Up – ME Fresh Water Cooling System IMO STCW 2010 Training
    ERS-Manifolds-and-Turbochargers-of-Main-Engine
    Energy Management Exercise with GDS Ship ERS (SERS) iaw IMO Model Course 2.07 – Figure01
    Ship Engine Room Simulator Electrical Systems IMO STCW 2010 Model Course 2.07 (1)
    GDS Ship ERS Effect of Draft Change on ME Parameters Fig02
    Ship Engine Room Simulator ERS Bow Thrustor IMO STCW 2010 Model Course 2.07
    Ship Engine Room Simulator Sample GUI Screens IMO STCW 2010 Containership
    Ship Engine Room Simulator Compressed Air System Electrical Systems IMO STCW 2010 Model Course 2.07
    Ship Engine Room Simulator Circuit Breakers Electrical Systems IMO STCW 2010 Model Course 2.07
    previous arrow
    next arrow

    A Summary of GDS Ship Engine Room Simulator (ERS) charateristics to fit into your training program

    With our product, certified by the Nippon Kaiji Kyokai (Class NK) as a Class A (Full Mission) Engine Room Simulator, our purpose is to ensure that the instructors can efficiently utilize this training environment in their Maritime Education and Training (MET) programs and that the trainees can have a productive training.

    Developed by GDS Engineering R&D; our product called Ship Engine Room Simulator (SERS);

    • Meets IMO STCW 2010 requirements (with Manila Amendments).
    • Supports training programs using IMO Model Course 2.07 (2017 Edition).
    • Certified by Class NK for meeting both IMO STCW 2010 and Model Course 2.07.
    • The simulator is the digital twin model of a real ship (ref. to User Manuals for complete references and details)
    • Configurable for an individual training study on a Workstation/PC
    • Configurable for group studies with distributed system configuration using distributed computers and large touch-screen panels as well as association of hardware consoles and panels.
    • Provides automated training reports.
    • Includes high voltage training functions
    • Simulates all engine room machinery and systems with over 50 Graphical User Interface (GUI) Panels.
    • All systems are interfaced with all engine room parameters, any change in any parts of the systems is immediately affect the other systems, as in reality!
    • Emphasizes all aspects of the electrical operations with realistic functions.
    • Easy graphical user interfaces that considerably decrease the time for learning and allowing instructors to directly move on to the training objectives.
    • Includes 5 User Manuals, allowing to apply the manuals to training programs directly.
    • Includes Exercise Workbooks for students to come to the simulator center with their study books. When books and user manuals are incorporated, it provides a similar work studies in real ships.
    • Exercise Book I is to use in the Operational Level of STCW 2010 training / competency levels. There are more than 10 example exercises are provided; already meeting the STCW objectives.
    • Exercise Book II is to use in the Management Level of STCW 2010 training/ competency levels. There are more than 10 example exercises are provided; already meeting the STCW objectives.
    • Engine room systems are simulated with high resolution rendered components providing easily readable GUIs on screens, which considerably decrease the learning time and moving on to the training subjects.

    For more information, clisk here to read the details of the GDS ERS in our ERS product page. https://www.globaldynamicsystems.com/

    or watch our YOUTUBE CHANNEL for more information with some example videos.

    Dr. İsmail Çiçek

    Dr İsmail Çiçek 1990 yılında İstanbul Teknik Üniversitesi (İTÜ) Gemi Makineleri İşletme Mühendisliği Bölümünden mezun oldu. Akademik dünya ve endüstrinin değişik alanlarındaki çalışmalarıyla geniş tecrübe sahibi olan İsmail Çiçek, Texas Tech Üniversitesi Makine Mühendisliği Bölümünden 1995’de Yüksek Lisans 1999’da doktora diplomalarını aldı. Dr Çiçek yüksek lisans çalışmasında dizayn ve kontrol sistemleri, doktora çalışmasında ise mekanik titreşimler ve kontrol sistemleri konularında çalışmalar yaptı.

    Dr İsmail Çiçek 1999-2003 yılları arasında İTÜ Denizcilik Fakültesi Gemi Makineleri İşletme Mühendisliği Bölümünde Öğretim Üyesi ve Bölüm Başkan Yardımcısı olarak görev yaptı. Bu süre içerisinde Dr Çiçek İTÜ Simülatör Merkezinin kurulması, International Association of Maritime Universities (IAMU) birliğinin oluşturulması, ve The State University of New York (SUNY) ile İTÜ Denizcilik Fakültesi arasında çift diplomalı lisans programının gerçekleştirilmesi çalışmalarında bulundu.

    1997 yılından günümüze Dr. İsmail Çiçek ABD savunma sektöründe proje yapan şirketlerde ve ABD Hava Kuvvetleri Komutanlığı bünyesinde değişik program ve projelerde uzun yıllar (toplam 15 yıl) mühendis ve lider olarak çalışmalar yürüttü. Dr. Çiçek’in savunma sanayi deneyimi Coğrafi Bilgi Sistemlerini kullanan İnsansız Hava Aracı ve Sistemleri geliştirilmesi ve US Marine Corps’a teslimi, sabit kanat uçakların modernizasyonu (C-5, C-17, C-130 E/H/J, vb), askeri cihazlarının uçak, hava ve deniz araçlarında kullanılabilmesi için ortama uyumluluk testleri, insansız hava araçları için dizel motor geliştirilmesi ve uygulanması gibi önemli çalışmaları içermektedir.

    Dr Çiçek, Raytheon ve Texas Tech Üniversitesi işbirliği ile hazırlanan Sistem Mühendisliği doktora programında Entegre Ürün Verifikasyon ve Validasyon dersini verdi. Titiz, enerjik ve mükemmel takım çalışması göstergeleri dolayısıyla İsmail Çiçek’e; Terra Health tarafından, 2009 yılında Mükemmel Mühendislik ve 2010 yılında Müşteriye Hizmette Üstünlük ödülleri, ABD Hava Kuvvetleri Komutanlığı’nca çok sayıda ödül ve teşekkür mektupları takdim edildi.
    Bir çok bilimsel ve mühendislik yayınları olan ve uluslararası konferans etkinlikleri bulunan Dr. İsmail Çiçek halen ASTM, ASME, IEEE ve ISO gibi uluslararası profesyonel kuruluşlarda aktif üye olup, askeri ve sivil standartlar geliştiren komitelerde çalışmalar yapmaktadır. Dr. Çiçek’in uluslararası sivil ve askeri standartlar konusunda uygulamalı tecrübeleri bulunmaktadır.

    Dr. İsmail Cicek, 2012 yılından itibaren İTÜ Denizcilik Fakültesi’nde Öğretim Üyesi olarak görev yapmakta, Otomatik Kontrol Sistemleri, Gemi Makine Dairesi Simülatörleri, Gemi Kontrol Sistemleri, Mekanik Titreşimler ve benzeri dersler vermektedir.  Dr. İsmail Çiçek Üniversite-Sanayi işbirliklerine önem vermektedir, bu sebeple de IMSO, TÜLOMSAŞ, MILPER, FEMSAN, ve benzeri kurum ve kuruluşlar ile birlikte çalışmalar da yapmıştır.