Future Sailors Protect the Marmara Sea with the MarBalast Project!

The “Raising Awareness on Marmara Sea Ballast and Bilge Pollution” project, supported by European Union Projects, draws attention to the environmental threats facing the Marmara Sea and aims to raise awareness among future sailors.
Environmental pollution caused by ballast and bilge water wastes originating from ships poses a serious threat to the Marmara Sea ecosystem. Although MARPOL and IMO Environmental Pollution rules aim to prevent this pollution, human factors and a lack of awareness can cause problems to continue.
At this point, the MarBalast Project was carried out under the consultancy of Assoc. Prof. Dr. Ismail Cicek aims to raise awareness through training for maritime students. Within the scope of the “Raising Awareness on Marmara Sea Ballast and Bilge Pollution” project, supported by European Union initiatives, highlights the environmental threats facing the Marmara Sea and aims to educate future sailors.
Pollution resulting from ship ballast and bilge water waste poses a significant threat to the Marmara Sea ecosystem. Although MARPOL and IMO environmental regulations are designed to prevent this pollution, human factors and a lack of awareness can lead to ongoing issues.
The MarBalast Project, guided by Assoc. Prof. Dr. Ismail Cicek seeks to raise awareness among maritime students through specialized training. As part of this project, the project team will organize conferences and workshops on maritime management and the importance of pollution prevention at various maritime faculties and high schools across Turkey.The project will last eight months and be executed by the Istanbul Technical University Maritime Technologies Club. Through the MarBalast Project, future sailors will learn about environmentally responsible maritime practices and contribute to protecting the Marmara Sea.
The main objectives of the project are:

  • To inform maritime students about the environmental damage caused by ships.
  • To emphasize the importance of adhering to international maritime regulations such as MARPOL and IMO.
  • To raise awareness aimed at minimizing environmental damage stemming from human activities.
  • To cultivate environmentally conscious generations of future sailors.

The MarBalast Project promises hope for the future of the Marmara Sea!

Engine Room Simulator, ERS, Ship, Engine Room, Marine Engineering, Maritime, Simulation, IMO STCW 2010, Standards for Training and Certification of Watchkeeping, Ship, Model Course 2.07 (2017 Ed.), SERS

The SIRE 2.0 training starts with the GDS SERS™ product using the newly developed SERS-T™ Tanker Ship model.

On July 8, 2023, Yıldız Technical University Faculty of Naval Architecture and Maritime Faculty Member Prof. Dr. Ahmet Dursun Alkan visited to see the Tanker Model SERS-T™, which will be the product of SERS™, and the Ship Engine Room SERS™, which is being installed at ITU Faculty of Maritime.

During the meeting at the ITU Maritime Faculty where SERS™, developed by GDS Engineering ARGE, was developed, SERS-T™, which is being developed for the SIRE 2.0 and ISM Code-Based Training of Tanker Type Ship Personnel within the scope of the TÜBİTAK 1501 Project, was introduced. With SERS-T™, a new system will be created to train sailors who will board the Tanker Ship. SERS™, which is actively used during the introduction, was also introduced.

In the developing simulator, Tanker ship machinery systems will be mathematically modeled and Graphical User Interface (GUI) Panels will be designed. The developed simulator will be compatible with SIRE 2.0 and ISM Codes required in Tanker Ships, and seafarers who will work on the Tanker Ship will be able to perform their training with Operation and Management level training scenarios.

During the visit, the Simulator Center for SERS™, which is being established at ITU Maritime Faculty, was toured.

SERS™ has been pre-installed at ITU Maritime Faculty. SERS™, which was brought to ITU in collaboration with GDS Engineering R&D and SimBT, was highly appreciated by Assoc. Prof. Dr. Ahmet Dursun Alkan. He also shared his own views and recommendations for SERS™ and SERS-T™ with Dr. İsmail Çiçek.

SERS™, which is being installed at ITU Maritime Faculty Simulator Center, will provide training to students from Turkish Maritime schools at ITU Maritime Faculty, thanks to its structure that keeps up with technology for education and its rapid adaptation to today’s ship models, and will ensure that the sector is trained with conscious sailors who are knowledgeable about ship engine rooms.

The Role of the GDS Ship Engine Room Simulator in Skill Development

The GDS Ship Engine Room Simulator is an advanced training tool that replicates the engine room environment of modern vessels, providing maritime personnel with hands-on experience in a controlled setting. This simulator covers a wide range of critical systems found in ship engine rooms, including propulsion, auxiliary machinery, electrical systems, and emergency protocols. By using the simulator, crew members can practice their skills, refine their decision-making processes, and gain confidence in handling complex systems without the risks associated with real-world errors.

The simulator allows trainees to engage in realistic scenarios, such as equipment failures, power management issues, and environmental challenges. This training is invaluable in helping them develop deep technical skills needed to respond effectively under pressure. Given the increasing complexity of ship machinery, which often integrates digital and automated controls, such simulator-based training ensures that personnel are well-prepared for both routine and emergency operations.

Developing Deep Technical Skills with SIRE 2.0 and the GDS Simulator

By integrating SIRE 2.0’s competency standards with the practical capabilities of the GDS Ship Engine Room Simulator, maritime training institutions can foster deep tech skills that are essential in today’s high-stakes maritime environment. Training programs using these tools can address various aspects, including:

Operational Readiness: By simulating real-life engine room conditions, the GDS simulator enables personnel to develop an intuitive understanding of systems and processes, which aligns with SIRE 2.0’s focus on crew readiness and situational awareness.

Crisis Management and Decision-Making: The simulator provides scenarios that replicate emergency situations, allowing trainees to practice crisis response, prioritize actions, and make critical decisions under pressure.

Technical Proficiency: The GDS simulator helps personnel develop advanced skills in troubleshooting and maintaining complex machinery, which is crucial for achieving SIRE 2.0’s standards for operational excellence.

Environmental Compliance: With a growing emphasis on environmental regulations, the simulator enables crew members to familiarize themselves with compliance standards and practice procedures that reduce environmental impact, such as optimizing fuel usage and managing waste effectively.

Safety Protocols: Through realistic training scenarios, the simulator reinforces safety protocols, ensuring that personnel can identify and mitigate risks, which is a core component of the SIRE 2.0 inspection program.

Engine Room Simulator, ERS, Ship, Engine Room, Marine Engineering, Maritime, Simulation, IMO STCW 2010, Standards for Training and Certification of Watchkeeping, Ship, Model Course 2.07 (2017 Ed.), SERS, Maritime, Ship Electricity, Electrical Systems

GDS SERS is now in use by a Malasian Maritime Institution

SERS, which is currently being used in both distance and face-to-face training in a training center established in Malta, ITU Northern Cyprus Department of Marine Engineering, and Yıldız Technical University Faculty of Naval Architecture and Maritime Studies in Ship Engine Room Simulator courses, has also started to be used in an educational institution in Malaysia. SERSTM, which will begin being used in the Engine Room Team Management training of personnel currently working on ships in Malaysia this summer, will be used in training 3rd and 4th-year maritime candidates at the beginning of the fall 2022 semester. For SERS, which is planned to be installed in stages, a system was established on June 22, 2022, where six students can receive training, and the installation will continue by increasing the number of students.

Akademi Maritim Penjana ilmu

SERS™, which was successfully installed via remote access to an educational institution in Malaysia, has also become the new favorite of maritime trainers in Malaysia. According to Çağrı Berk Güler, who coordinated the stages during the installation and is part of the group that developed SERS™, one of the biggest reasons for the preference of educational institutions and companies abroad is that remote installation can be carried out and the program is elementary to ensure compatibility with Windows-based systems.

The simulator, made ready for use with full remote access at the educational institution in Malaysia, was installed on the educational computers and then used in training. The institution said they decided to use SERS™ remotely and liked it very much. After the pilot class application, they planned to use the software for all laboratory classes.

Chief Engineer Nazir Hamzah converted the classroom into an Engine Room Team Management Training Lab using SERS™. More components and licenses will be added incrementally. This is a great approach for starting education and training.

About SERS

SERS™ covers all training given using an engine room simulator, as specified in IMO STCW 2010 qualification tables. Also covering IMO Model Course 2.07 (2017) Applications, SERS™ has started to make a name for itself, especially abroad, and has attracted the attention of the maritime sector in the Turkish market, as it offers many academic and practical applications that are not available in simulators currently used in training institutions. The essential features of SERS™, which is developed in a modular structure that can be installed in many different configurations and supplied with various budgets, its advantages and differences from competitor products and application configuration types are explained in detail on the GDS company website.