IMO Model Course Exercise recommends students learn the weather change effect on engine performance.
GDS Engineering R&D developed a modern Engine Room Simulator (ERS) and it is in use by various research and training institutions. GDS ERS, called SERS, includes all engine room, ship, and environmental paramaters to demonstrate the weather effect to engine performance while onboard systems are maintaining their status with the displayed parameters. This scenario study is a predefined and set in the ERS for instructors to directly apply in their STCW Management Level Exercises. Student Workbooks accomodate this exercise with specficic forms to fill by the trainees.
GDS Engineering R&D is a research and development company, established by the academicians employed at Istanbul Technical University Maritime Faculty, Tuzla, Istanbul. GDS SERS Development Team has been utilizing engine room simulators since 2001, every year for training of marine engineering students with the following two engineering courses:
ERS I Operational Level Simulator Course: This course is for STCW Operational Level Proficiency Training after completing other Operational Level Courses at 4-year-university level. It is 4 hrs a week continuing for 14 weeks per semester. Each student must take this course to be eligible for long term training onboard a ship.
ERS II Management level Simulator Course: This course is to satisfy the proficiency levels for Management Level. It is 3 hours for 14 weeks and each student must complete the onboard training and then after completing this class for graduation.
Through using simulators in both of these courses since 2001, we gained a good level of expertise on the use of simulators in Maritime Education & Training. Our team has also provided Training of Trainers courses IMO Model Courses 6.09 and 6.10. Some of our team members provided on site training at other Turkish institutions and became experienced on using simulators developed by various manufacturers.
Experienced in academic, engineering, and simulator courses, we have started describing a new simulator, aiming to provide an engine room simulator with the following important characteristics:
Reduction of Learning Time of the Software to Focus on Engine Room Systems Training:
Having different mouse key assignments or keyboard shortcuts in a simulator for various software functions and controls make the software much more complex to use and that affect the training objectives negatively. Therefore;
SERS provide a much less complex user interface allowing trainees focus on the professional tasks for “running the engine room systems” rather than “running the simulator.”
All GUI panels are easily displayed or closed:
“1-Click” Approach for ease of use:
All sysems are operated with a left mouse click.
All software functions are activated with a left mouse click.
All selections are made with a left mouse click.
No hidden functions or keys to use for activating a specific panel.
Fidelity and Realism
Having a more accurate approach on how to display and how to operate the systems and components.
Realistic functionality of pumps, compressors, engines, etc. with mathematical modeling reflecting the realistic time durations and process dynamics.
Realistic remote and local control for the pumps and compressors.
Realistic graphical user interface for electrical system (Circuit Breakers, Remote Panels, Synchronization Panel, etc.)
Piping and Instrumentation Diagram (P&ID) objects, such as valves, are designed and shown in accordance with the respective international standards. Also, real engine rooms are studied to understand and display the controls, valves, and similar objects with a more understandable object design.
Pipe colors are selected to fit to the international standards. This provides a more comprehensive maritime education approach and ensures enough practice opportunity for diagram reading in the real engine room.
Components are created with various drawing and design software packages, then they are animated for better understanding, and better on-off state indications. For example, trainee could understand a pump is turning and could see there is a flow in a pipe with both color change and observed parameters.
Enough/necessary parameters displayed to understand the engineering principles.
Emphasis on Safety Systems (CO2 Fixed Fire Installation system is included as a separate panel)
Emphasis on Upcoming Regulations or Technology (Inclusion of ME Denoxification system as a separate panel).
Basic sounds (alarms and engine sounds) are implemented. Alarms are implemented appropriately as in the real environment with SILENCE, ACKNOWLEDGE and RESET buttons.
Unique Assessment Features
SERS provides direct evaluation methods with objective evidence of training with the following training outputs:
A text based training report generated for each trainee for each training session.
Screen captures generated for each user action and recorded in a historic time order, allowing to monitor and display the complete flow of the trainee actions.
Instructor monitoring and reaction time display and record for each trainee.
Trainee tools to easily record and maintain the training records.
More Accurate Philosphy is developed for use of SERS for a more Efficient and Realistic “Team Management” Training
“Repeating all functions in distributed computers” approach cause students tend to complete all training functions from one computer only. However;
SERS architecture allow for distributing panels to different units without repeating. Student must complete the task from its designated location.
Ship Engine Room Simulator (Ship ERS or SERS™) is certified to meet both IMO STCW 2010and IMO Model Course 2.07 Exercise Requirements
SERS™ User Manuals
SERS™ is provided with a total of seven (7) user manuals, student exercise workbooks, and documents as complementary to the training practices. All these documents are supplied with a license purchase. Using the SERS™ document set in classroom study also promotes the real-world engine room best work practices of using manuals in operation and management of the engine room machinary and systems.
SERS User Manual Vol I (Software Description) describes the SERS software with the SERS Graphical User Interface (GUI) Panels accessed from the SERS Main Graphical User Interface (GUI) Panel.
SERS User Manual Volume II (Engine Room Operations) includes the operational instructions on how to operate the engine room systems and machinery using the SERS. The training institutions can directly use the contents of this manual in their training procedures. There are also exercises included for use by the trainees for reporting.
SERS User Manual Vol III (Installation & Configuration) describes the installation and the configuration of the software and hardware items. Using this manual, SERS can be configured to run as a Distributed System and the touch screen hardware panels can be assigned to desired GUI panels using the configuration files.
SERS User Manual Volume IV (Instructor’s Manual) includes guides, information, and additional exercise tips for the instructors to utilize SERS in their trainings according to a specific training objective.
Student Exercise Workbooks per IMO Model Course 2.07
Student Exercise Workbook, Volume I: We are already using the simulator in our own training programs and developed Volume I with exercies that meets each objectives of the IMO Model Course 2.07. Volume I exercises includes the Engine Room Operational Level training objectives.
Student Exercise Workbook,Volume II: Volume II exercises includes the Engine Room Management Level training objectives in accordance with IMO Model Course 2.07.
SERS Philosophy Document provides how SERS may be used in a curricula or in engine room simulator training programs. It provides guides for selecting the configuration of the SERS according to the training objectives.
Students can Complete and Report the IMO Model Course 2.07 Exercises with Online Training
IMO Model Course Engine-Room Simulator 2.07 (2017 Edition)
Operation of plant machinery 2.1. Operational procedures 2.2 Operate main and auxiliary machinery and systems 2.3. Operation of diesel generator 20 2.4. Operation of steam boiler 2.5. Operation of main engine and associated auxiliaries 2.6. Operation of steam turbo generator 2.7. Operation of fresh water generator 2.8. Operation of pumping system 2.9. Operation of oily water separator 2.10. Fault detection and measures
Maintain a safe engineering watch 19 3.1. Thorough knowledge of principles to be observed in keeping an engineering watch 3.2. Safety and emergency procedures; changeover of remote/automatic to local control of all systems 3.3. Safety precautions to be observed during a watch and immediate actions to be taken in the event of fire or accident, with particular reference to oil systems 3.4. Knowledge of engine room resource management principles
Operate electrical, electronic and control systems 4.1. Operation of main switch board 4.2. High-voltage installations
Certified for use in training and education of marine engineering cadets.
Certified by ClassNK, a Japanese Classification Society. Class NK is an official member of IACS.
Certification includes IMO STCW 2010 (with Manila Amendments)
Certification type is Full Mission (Class A) type approval.
Certification includes IMO Model Course 2.07 (2017 Edition).
Applicable for Remote (Online) Training
Provides two types of mostly used engine modes.
Simulates all engine room machinery and systems with more than 50 GUI Panels.
Satisfies the High Voltage Training requirements.
Includes Environmental Pollution modules, such as Ballast Water Treamen, Oily Water Separator, ME Denoxification System, and others.
Includes Energy Efficiency modules. Students can compare theoretical studies against the simulator instances using Sunken Diagrams.
Includes engine performance monitoring tools. Students are able to compare the current values againt the baselined ship’s navigation test as well as main engine’s factory test data. The baselined test data are presented within the software to the students with graphs. This our unique approach is to actually duplicate the real world work environment of wachkeeping engineers checking the parameters against the user manuals and engine books with test data.
Provides a realistic environment for emergency operations with all required systems.