Maritime Studies. Man Overboard. Denize Adam Düşmesi. Maritime Accident Investigation Reports. Maritime Research. IMO GISIS. Database. Veritabanı Oluşturulması. EU Project. TUBITAK. ITU Maritime Faculty. İTÜ Denizcilik Fakültesi. Maritime Accident Investigation, Casualty Investigation Code, Man Over Board (MOB), Lessons Learned, Database, Data Format, Report Forms.

Maritime Investigation Reports Involving Man-Over-Board (MOB) Casualties: A Methodology for Evaluation Process

Turkish Journal of Maritime and Marine Sciences, Vol: 5 No: 2 (2019) 141-170.

Authors

Orhan Gönel and İsmail Çiçek

Abstract

Flag states must issue their maritime investigation reports in accordance with the International Maritime Organization (IMO) circulars with the inclusion of ‘lessons learned’ items from recorded accidents or incidents. To identify the root cause of an event, there must be enough detail of information about the investigated event presented in reports. The information included in reports may help identifying the procedural deficiencies or technical challenges. Considering the Man-Over- Board (MOB) events as a sub group of maritime accident  nvestigations, authors systematically reviewed over 100 reports containing MOB events in this study.

In this study, reports are reviewed and major differences in formats as well as level and type of information are recorded. A systematic methodology for reviewing and reporting the overall information retrieved from maritime accident reports is presented. To cover all information from reviewed reports, 113 information items are identified. An associated standard form is developed for use in extracting information from all investigation reports. Enabling the data collected systematically from reports, issued by the world maritime accident reporting states and agencies, and successively populated into a database for overall analysis, this form is called “Maritime MOB Events Investigation Form (MEI Form)”. This paper presents the content of the MEI Form and demonstrates the methodology of use for retrieving, formatting and analyzing the information from the MOB investigation reports using case examples.

Click to see published paper for more reading.

Keywords

Maritime Accident Investigation, Casualty Investigation Code, Man Over Board (MOB), Lessons Learned, Database, Data Format, Report Forms.

Highlights

  • A Form was developed and proposed for use in accident investigations.
  • Using the form and entry into a database, maritime accident investigation data is digitized.
  • Statistical Data for MOB Events were obtained and presented.
  • results provide useful data for having lessons learned items.
  • Provides a methodology for root-cause of MOB events.
  • Lessons learnt process is automated.
Global Dynamic Systems. GDS Systems Engineering Training Programs. Simulators. Engine Room Simulator (ERS). Ship. Electrical Systems Simulator. Physics Lab. UH60. Amphibious. Ground Vehicles. Military Training Programs. MIL-STD-810H Online Training. Environmental Testing of Military Products. Training helps reduce your design and operational risks. We provide MIL-STD-810H, RTCA-DO-160, Vibration and Shock, FAA Requirements Management courses. by Dr Ismail Cicek and a CVE certified by EASA. Ship Engine Room Simulator (ERS) SERS GDS Engineering R&D IMO STCW 2010, Engine Performance, Main Diesel Engine, Marine, Maritime, IMO Model Course 2.07. Certified by Class NK. ITU Maritime Faculty. Yıldız Technical University. Competencies. Operation and Management Level. Education and Training. Assessment of Marine Engineers. Troubleshooting with Fault Tree Scnearious and Analysis Reporting. Maritime. Marine Engineering.

GDS Mühendislik ARGE San. Tic. Ltd. Şti. (GDS Engineering R&D, Inc.)

GDS Mühendislik ARGE San. Tic. Ltd. Şti., 2014 yılında Teknopark istanbul’da kurulmuş olan bir ArGe firmasıdır.

Kısa adıyla GDS;

Denizcilik sektöründe simülatör ürünleri geliştirmekte, özelllikle denizcilik eğitimlerinde kullanılmak üzere Gemi Makine Dairesi (Ship Engine Room Simulator) ve benzeri simülatörler geliştirmektedir. GDS’nin ana ürünü olan Ship Engine Room Simulator (SERS), marka tescili tamamlanmış ve uluslararası denizcillik sertifikasyon ajansı olan ClassNK tarafından sertifikalanmıştır. SERS, Yıldız Teknik Üniversitesi, One Yachts, ve İstanbul Teknik Üniversitesi gibi önemli denizcilik eğitim kurumlarında kullanılmaya başlanmıştır. GDS, SERS yanında Gemi Elektrik Sistemleri Simülatörü gibi diğer denizcilik eğitim simülatörleri de geliştirmiş ve çalışmalarına devam etmektedir.

GDS, Denizcilik Sektörü‘nde projeye özel, bilgi ve tecrübeye dayalı, danışmanlık hizmetleri de vermektedir. ARKAS BIMAR’a ait TÜBİTAK projesi ile Makine Öğrenmesi konulu çalışma devam etmektedir. Karadeniz Holding (Karpowership)’e ait bir gemi için denize yayılan gürültü ölçümü ve analizleri konulu bir çalışma ve uluslararası geçerli bir rapor çalışması yapmıştır. Benzer mühendislik ve danışmanlık çalışmaları ile denizcilik sektörüne hizmetlerimiz devam etmektedir.

Havacılık Sektörü‘ne ait olarak GDS personeli, RTCA-DO-160 Çevresel Test Standardı eğitimi vermekte, bu standarda göre test planı ve testlerin yönetilmesi konusunda hizmet vermektedir.

Savunma Sektörü’nde çok önemli olan MIL-STD-810H konusunda uluslararası deneyimlere sahip okan GDS, bu konuda eğitimler vermekte ve test planı, test gereksinimleri hazırlanması, ve test projelerinin yürütülmesi konusunda sektöre hizmet vermektedir.

GDS personeli aynı zamanda İTÜ Denizcilik Fakültesi’nde akademik kadroda bulunan kişilerden oluşmakta olup İTÜ Denizcilik Test Uygulama ve Araştırma Merkezi’nde (İTÜ DETAM), üniversite-sanayi işbirlikleri kapsamında test, danışmanlık ve mühendislik hizmetleri sunmaktadır. İngilizce adıyla İTÜ Marine Equipment Test Center (METC), titreşim, sıcaklık, buzlandırma, düşürme, istif, iç basınç, çekme, çentik, sızdırmazlık, tuz sisi gibi çevresel testleri yapabilmektedir.

GDS, ürünleri ve bilgi-deneyim potansiyeli ile global çalışmalara katkı vermeye devam etmektedir.

GDS’ye ait ürünler ve çevrimiçi verilen eğitimler aşağıda listelenmiştir.

GLOBAL DYNAMIC SYSTEMS (GDS)
TRAINING COURSES
Worldwide, Online, for ‘Groups’ or ‘Individuals’

Training on
MIL-STD-810H
ENVIRONMENTAL TESTING

Training on
EMI/EMC Testing
(per RTCA-DO-160 & MIL-STD-461)

Training on
Vibration and Shock
Testing

Training on
Systems Engineering
(DoD/FAA/NASA/EASA)

Training on
RTCA-DO-160G
ENVIRONMENTAL TESTING

Training on
MIL-STD-461G EMI/EMC Testing
(incl. MIL-STD-464)

Training on
Requirements Management
(FAA/EASA/US DoD/NASA)

Training on
MIL-STD-704F
Aircraft Electrical Interface


OUR REFERENCES

We have provided training and test consultancy services to more than 100 companies and organizations and over 500 individual trainees so far.

GDS Engineering R&D provides systems engineering training courses. Provided RTCA-DO-160G Training at Turkish Technique (HY Teknik)GDS Engineering R&D has been providing systems engineering training courses (such as MIL-STD-810 and RTCA-DO-160) since 2009!tulomsas, Ismail Cicek, Systems Engineering Training Studies, 2014-2015  TÜLOMSAŞ LOGOSST Flugtechnik GmBH LogoRaytheon, in Dallas TX, Provided Product Verification and Validation PhD Course in 2009 by Dr Ismail Cicek as part of the Texas Tech & Raytheon PhD Study on Systems Engineering
GDS Engineering R&D has been providing systems engineering training courses (such as MIL-STD-810 and RTCA-DO-160) since 2009!ARMERKOM Logo - MIL-STD-810 Training Provided by GDS Engineering, NAVY, Donanma, Egitim Test Çevresel TestlerMIL-STD-810 Egitimi DzKK LogoGDS Engineering R&D has been providing systems engineering training courses (such as MIL-STD-810 and RTCA-DO-160) since 2009!USAF_-_Aeronautical_Systems_Center Acceleration Test MIL-STD-810 Consultancy
GDS Systems Engineering Training Programs. Online Training. Training helps reduce your design and operational risks. We provide MIL-STD-810H, RTCA-DO-160, Vibration and Shock, FAA Requirements Management courses. by Dr Ismail Cicek and a CVE certified by EASA. Tailoring of the MIL-STD-810H test methods and procedures. EUT. Equipment Under Test. Online Classes. US based intructor. US DOD. EASA. FAA. NASA. Miliary Stanrdards. Askeri Test Standartları. Çevresel Test Standart Eğitimi. Eğitim.  Acceleration Testing. Aircraft Systems. RTCA-DO-160. Crash Hazard. Korozyon Testleri. Corrosion Tests. Environmental Testing of Products, provided by GDS Engineering R&D, Systems Engineering Products and Solutions. Dr. Ismail Cicek. Product Verification and Validation Courses for Integrated Systems. C-17 Military Aicraft. FAA/EASA. US DoD. Safety First. US Army. US Air Force and US Navy Tailoring Examples for Mission and Environmental Profile. Setting Test Limits and Durations are Explained. How to evaluate test results and mitigate the risk (Risk Assessment Matrix). Aircafft Equipment, Devices, Plugs, Machinary, Engines, Compressors, or Carry-on. European CE Time Schedule. DOT/FAA/AR-08/32. Requirements Engineering Management Handbook. U.S. Department of Transportation Federal Aviation Administration. Tailoring Guidance. Tailoring per MIL-STD-810H Testing. Tailoring for MIL-STD-810H Testing. MIL-STD-810H Tailoring Examples. Acceleration and Shock Tests, Sled Testing. Vibration testing of a Waterjet Turbine.STM. GDS Engineering R&D has been providing systems engineering training courses (such as MIL-STD-810 and RTCA-DO-160) since 2009!TUBITAK BILGEM Logo - MIL-STD-810 Training Egitim Env Test. GDS Systems Engineering Training Programs. Online Training. Training helps reduce your design and operational risks. We provide MIL-STD-810H, RTCA-DO-160, Vibration and Shock, FAA Requirements Management courses. by Dr Ismail Cicek and a CVE certified by EASA. Tailoring of the MIL-STD-810H test methods and procedures. EUT. Equipment Under Test. Online Classes. US based intructor. US DOD. EASA. FAA. NASA. Miliary Stanrdards. Askeri Test Standartları. Çevresel Test Standart Eğitimi. Eğitim. Acceleration Testing. Aircraft Systems. RTCA-DO-160. Crash Hazard. Korozyon Testleri. Corrosion Tests. Environmental Testing of Products, provided by GDS Engineering R&D, Systems Engineering Products and Solutions. Dr. Ismail Cicek. Product Verification and Validation Courses for Integrated Systems. C-17 Military Aicraft. FAA/EASA. US DoD. Safety First. US Army. US Air Force and US Navy Tailoring Examples for Mission and Environmental Profile. Setting Test Limits and Durations are Explained. How to evaluate test results and mitigate the risk (Risk Assessment Matrix). Aircafft Equipment, Devices, Plugs, Machinary, Engines, Compressors, or Carry-on. European CE Time Schedule. DOT/FAA/AR-08/32. Requirements Engineering Management Handbook. U.S. Department of Transportation Federal Aviation Administration. Tailoring Guidance. Tailoring per MIL-STD-810H Testing. Tailoring for MIL-STD-810H Testing. MIL-STD-810H Tailoring Examples. Acceleration and Shock Tests, Sled Testing. Vibration testing of a Waterjet Turbine.
GDS Engineering R&D has been providing systems engineering training courses (such as MIL-STD-810 and RTCA-DO-160) since 2009!CTECH Logo. GDS Systems Engineering Training Programs. Online Training. Training helps reduce your design and operational risks. We provide MIL-STD-810H, RTCA-DO-160, Vibration and Shock, FAA Requirements Management courses. by Dr Ismail Cicek and a CVE certified by EASA. Tailoring of the MIL-STD-810H test methods and procedures. EUT. Equipment Under Test. Online Classes. US based intructor. US DOD. EASA. FAA. NASA. Miliary Stanrdards. Askeri Test Standartları. Çevresel Test Standart Eğitimi. Eğitim.  Acceleration Testing. Aircraft Systems. RTCA-DO-160. Crash Hazard. Korozyon Testleri. Corrosion Tests. Environmental Testing of Products, provided by GDS Engineering R&D, Systems Engineering Products and Solutions. Dr. Ismail Cicek. Product Verification and Validation Courses for Integrated Systems. C-17 Military Aicraft. FAA/EASA. US DoD. Safety First. US Army. US Air Force and US Navy Tailoring Examples for Mission and Environmental Profile. Setting Test Limits and Durations are Explained. How to evaluate test results and mitigate the risk (Risk Assessment Matrix). Aircafft Equipment, Devices, Plugs, Machinary, Engines, Compressors, or Carry-on. European CE Time Schedule. DOT/FAA/AR-08/32. Requirements Engineering Management Handbook. U.S. Department of Transportation Federal Aviation Administration. Tailoring Guidance. Tailoring per MIL-STD-810H Testing. Tailoring for MIL-STD-810H Testing. MIL-STD-810H Tailoring Examples. Acceleration and Shock Tests, Sled Testing. Vibration testing of a Waterjet Turbine.
BMC Power Log. GDS Engineering R&D has been providing systems engineering training courses (such as MIL-STD-810,  RTCA-DO-160), MIL_STD-461 since 2009!GDS Engineering R&D has been providing systems engineering training courses (such as MIL-STD-810 and RTCA-DO-160) since 2009!
GDS Engineering R&D has been providing systems engineering training courses (such as MIL-STD-810H and RTCA-DO-160G) since 2009!
GDS Engineering R&D has been providing systems engineering training courses (such as MIL-STD-810 and RTCA-DO-160) since 2009!GDS Engineering R&D has been providing systems engineering training courses (such as MIL-STD-810H and RTCA-DO-160G) since 2009!
GDS Engineering R&D has been providing systems engineering training courses (such as MIL-STD-810 and RTCA-DO-160) since 2009!MILPER, Project Studies with Dr Ismail Cicek 2012-2014, Maritime Propeller R&D, Development and Testing

References of GDS Simulator Users
&
Solution Partners
in
Maritime Training and Research

Engine Room Simulator (ERS). Ship Engine Room Simulator. IMO STCW 2010 Training. Marine Engineering Cadets. Maritime. IMO Model Course 2.07. Online Training. COVID-19. Certified by Class NK, IACS Member. Maritime Education and Training (MET)Engine Room Simulator (ERS). Ship Engine Room Simulator. IMO STCW 2010 Training. Marine Engineering Cadets. Maritime. IMO Model Course 2.07. Online Training. COVID-19. Certified by Class NK, IACS Member. Maritime Education and Training (MET). Containership. Yacht Taining. Tanker Personnel.Engine Room Simulator (ERS). Ship Engine Room Simulator. IMO STCW 2010 Training. Marine Engineering Cadets. Maritime. IMO Model Course 2.07. Online Training. COVID-19. Certified by Class NK, IACS Member. Maritime Education and Training (MET). Containership. Yacht Taining. Tanker Personnel.
tülomsaş, R&D study, Milli Dizel Motoru Çalışması, ARGE, TÜBİTAK, Dizel Motorlarda Verimlilik, İTÜAkademi Maritim Penjana ilmuNorth Star Enterprise Bangladesh
Engine Room Simulator (ERS). Ship Engine Room Simulator. IMO STCW 2010 Training. Marine Engineering Cadets. Maritime. IMO Model Course 2.07. Online Training. COVID-19. Certified by Class NK, IACS Member. Maritime Education and Training (MET). Containership. Yacht Taining. Tanker Personnel.Engine Room Simulator (ERS). Ship Engine Room Simulator. IMO STCW 2010 Training. Marine Engineering Cadets. Maritime. IMO Model Course 2.07. Online Training. COVID-19. Certified by Class NK, IACS Member. Maritime Education and Training (MET). Containership. Yacht Taining. Tanker Personnel.
Engine Room Simulator (ERS). Ship Engine Room Simulator. IMO STCW 2010 Training. Marine Engineering Cadets. Maritime. IMO Model Course 2.07. Online Training. COVID-19. Certified by Class NK, IACS Member. Maritime Education and Training (MET). Containership. Yacht Taining. Tanker Personnel.tuzeks gds Engine Room Simulator (ERS) Engine Tests, Vibration Testing, Consultancy, KOSGEB Project
Simulator Studies in Cooperation between SDT and GDS Engineering R&DMILPER, Project Studies with Dr Ismail Cicek 2012-2014, Maritime Propeller R&D, Development and Testing
Karpowership logo - GDS Engineering R&D Services Karadeniz Holding
GDS Systems Engineering Training Programs. Online Training. Training helps reduce your design and operational risks. We provide MIL-STD-810H, RTCA-DO-160, Vibration and Shock, FAA Requirements Management courses. by Dr Ismail Cicek and a CVE certified by EASA. Tailoring of the MIL-STD-810H test methods and procedures. EUT. Equipment Under Test. Online Classes. US based intructor. US DOD. EASA. FAA. NASA. Miliary Stanrdards. Askeri Test Standartları. Çevresel Test Standart Eğitimi. Eğitim. Acceleration Testing. Aircraft Systems. RTCA-DO-160. Crash Hazard. Korozyon Testleri. Corrosion Tests. Environmental Testing of Products, provided by GDS Engineering R&D, Systems Engineering Products and Solutions. Dr. Ismail Cicek. Product Verification and Validation Courses for Integrated Systems. C-17 Military Aicraft. FAA/EASA. US DoD. Safety First. US Army. US Air Force and US Navy Tailoring Examples for Mission and Environmental Profile. Setting Test Limits and Durations are Explained. How to evaluate test results and mitigate the risk (Risk Assessment Matrix). Aircafft Equipment, Devices, Plugs, Machinary, Engines, Compressors, or Carry-on. European CE Time Schedule. DOT/FAA/AR-08/32. Requirements Engineering Management Handbook. U.S. Department of Transportation Federal Aviation Administration. Tailoring Guidance. Tailoring per MIL-STD-810H Testing. Tailoring for MIL-STD-810H Testing. MIL-STD-810H Tailoring Examples. Acceleration and Shock Tests, Sled Testing.

Do you need to perform acceleration testing of your military products or systems for specific platforms?

Acceleration, as addressed in MIL-STD-810G Method 513.6 (Department of Defense, 2009), is a load factor (inertial load or “g” load) that is applied slowly enough and held steady for a period of time such that the materiel has sufficient time to fully distribute the resulting internal loads to all critical joints and components.

The common methods used to expose equipment to a sustained acceleration load are centrifuge and track/rocket-powered-sled testing.


However, both methods impose limitations on AE equipment testing. For example, the costs required and the scheduling, planning, and coordination phases associated with the use of these types of test
facilities are often prohibitive. In some cases, centrifuges and track/rocket sleds may limit the orientations at which the test article can be mounted for testing. To maintain validity, all AE devices are tested under the same mounting configuration as intended for operational use. Finally, due to the often expensive and delicate nature of medical devices, insufficient inventories often prevent the use of these tests due to their somewhat destructive nature.


Because of the difficulties associated with physical dynamic testing, the ATB team initially turned to Finite Element Analysis (FEA) as the method of choice for meeting acceleration test requirements.

MIL-STD-810H Training. Acceleration Testing. Aircraft Systems. RTCA-DO-160. Crash Hazard.

Recent technological advances in microcomputing and higher resolution graphics capabilities allowed complex systems to be modeled and simulated for both static and dynamic tests.

The FEA techniques were already used by others for various aircraft structures and devices. For example, Foster and Sarwade (2005) performed an FEA of a structure that attached medical devices to a litter. This structure was later approved as STF. Continuing on the same theme, Lawrence, Fasanella, Tabiei, Brinkley, and Shemwell (2008) studied a crash test dummy model for NASA’s Orion
crew module landings using FEA. Viisoreanu, Rutman, and Cassatt (1999) reported their findings for the analysis of the aircraft cargo net barrier using FEA. Furthermore, Motevalli and Noureddine (1998)
used an FEA model of a fuselage section to simulate the aircraft cabin environment in air turbulence. These and similar studies demonstrated the successful use of the FEA method to verify requirements
by analysis for an acceleration test.


Given the costs associated with dynamic testing, the ATB originally envisioned using the FEA method to alleviate budget and inventory concerns. To test this theory, the ATB employed FEA for testing various AE structures to meet the acceleration requirements and found some aspects of this method to be cost- and time-prohibitive.


Lessons learned from these studies are provided in the case-studies section. The various types of analysis and test methods raise questions as to what the correct decision process is for selecting the most appropriate method for STF testing of AE equipment.

RTCA-DO-160 Fire and Flammability Training. MIL-STD-810H. Risks and Assessment Techniques.

The authors of this article describe the process developed and employed by the ATB for the acceleration testing of AE equipment since June 2008.


The ATB’s process has proven to be well suited for identifying the most appropriate test method—one that not only represents the most appropriate and effective test method, but also minimizes the use of available resources. This process includes testing both structurally simple and complex equipment and successfully introducing the use of the Equivalent Load Testing (ELT) method, which permits
the use of alternative testing approaches, such as pull testing and tensile testing.

GDS Systems Engineering V&V Training Courses
Event Calendar

We announce upcoming training on these pages. Due to COVID-19 pandemic situation, we offer only ONLINE training courses for the time being. Please communicate with us if you need a group training, which could be scheduled based on your plans and schedules.

Select the best training from below list that fits to your training needs.

Upcoming Events


Ship Engine Room Simulator (ERS) SERS GDS Engineering R&D IMO STCW 2010, Engine Performance, Main Diesel Engine, Marine, Maritime, IMO Model Course 2.07. Certified by ClassNK. ITU Maritime Faculty. Yıldız Technical University. Competencies. Operation and Management Level. Education and Training. Assessment of Marine Engineers. Troubleshooting with Fault Tree Scnearious and Analysis Reporting. Objective Assessment. Nippon Kaiji Kyokai.High Voltage Training Functions 6600 VAC. Ship Propulsion Systems. Maritime Education and Training. Main Engine Performance. Sunken Diagrams. Energy Efficiency. Marine Engineering. Effect of Draft Change in the Ship Main Engine Performance Parameters. Management Level Training Exercices, Marine Engineering Education and Training. SERS Trademark

A new and modern Engine Room Simulator (ERS) has recently been certified by Class NK: It Meets the Online Training Requirements of IMO STCW 2010 and Model Course 2.07

Ship Engine Room Simulator (Ship ERS or SERS™) is certified to meet both IMO STCW 2010 and IMO Model Course 2.07 Exercise Requirements

SERS™ User Manuals

SERS™ is provided with a total of seven (7) user manuals, student exercise workbooks, and documents as complementary to the training practices. All these documents are supplied with a license purchase. Using the SERS™ document set in classroom study also promotes the real-world engine room best work practices of using manuals in operation and management of the engine room machinary and systems.

SERS User Manual Vol I (Software Description) describes the SERS software with the SERS Graphical User Interface (GUI) Panels accessed from the SERS Main Graphical User Interface (GUI) Panel.

SERS User Manual Volume II (Engine Room Operations) includes the operational instructions on how to operate the engine room systems and machinery using the SERS. The training institutions can directly use the contents of this manual in their training procedures. There are also exercises included for use by the trainees for reporting.

SERS User Manual Vol III (Installation & Configuration) describes the installation and the configuration of the software and hardware items. Using this manual, SERS can be configured to run as a Distributed System and the touch screen hardware panels can be assigned to desired GUI panels using the configuration files.

SERS User Manual Volume IV (Instructor’s Manual) includes guides, information, and additional exercise tips for the instructors to utilize SERS in their trainings according to a specific training objective.

Student Exercise Workbooks per IMO Model Course 2.07

Student Exercise Workbook, Volume I: We are already using the simulator in our own training programs and developed Volume I with exercies that meets each objectives of the IMO Model Course 2.07. Volume I exercises includes the Engine Room Operational Level training objectives.

Student Exercise Workbook,Volume II: Volume II exercises includes the Engine Room Management Level training objectives in accordance with IMO Model Course 2.07.

SERS Philosophy Document provides how SERS may be used in a curricula or in engine room simulator training programs. It provides guides for selecting the configuration of the SERS according to the training objectives.

Students can Complete and Report the IMO Model Course 2.07 Exercises with Online Training

IMO Model Course Engine-Room Simulator 2.07 (2017 Edition)

  • Familiarization
  1. Familiarization
    1.1 Plant arrangement
    1.2. Instrumentation
    1.3. Alarm system
    1.4. Controls
  • Operation of plant machinery
    2.1. Operational procedures
    2.2 Operate main and auxiliary machinery and
    systems
    2.3. Operation of diesel generator 20
    2.4. Operation of steam boiler
    2.5. Operation of main engine and associated
    auxiliaries
    2.6. Operation of steam turbo generator
    2.7. Operation of fresh water generator
    2.8. Operation of pumping system
    2.9. Operation of oily water separator
    2.10. Fault detection and measures
  • Maintain a safe engineering watch 19
    3.1. Thorough knowledge of principles to be observed in keeping an engineering watch
    3.2. Safety and emergency procedures; changeover of remote/automatic to local control of all systems
    3.3. Safety precautions to be observed during a watch and immediate actions to be taken in the event of fire or accident, with particular reference to oil systems
    3.4. Knowledge of engine room resource management principles
  • Operate electrical, electronic and control systems
    4.1. Operation of main switch board
    4.2. High-voltage installations
  1. Manage operation of electrical and electronic……

Click here to read more.

Download Brochure [PDF]

We are looking for country/area representatives!

Send your requests to GDS Customer Desk @
Email: info@GlobalDynamicSystems.com
Ph: +90 (546) 585-3969

Engine Room Simulator (ERS), IMO Model Course 2.07, IMO STCW 2010, Class Certificate, Marine Engineering Training & Evaluation
Line Up - ME Fresh Water Cooling System IMO STCW 2010 Training, IMO Model Course 2.07. Prevent Maritime Accidents. Training is Important. Marine Engineering Training Products, Ship Engine Room Simulator, Ship ERS or simply the SERS, provided by GDS Engineering R&D. Cost Reduction. Covid-19. Virtual Systems. Digital Twin. Industry 4.0. Maritime 4.0. Denizcilik 4.0. Engine Room 4.0.
Line Up - ME Fresh Water Cooling System IMO STCW 2010 Training, IMO Model Course 2.07. Prevent Maritime Accidents. Training is Important. Marine Engineering Training Products, Ship Engine Room Simulator, Ship ERS or simply the SERS, provided by GDS Engineering R&D.
Energy Management Exercise with GDS Ship ERS (SERS) iaw IMO Model Course 2.07, IMO STCW 2010 (with Manila Amendments). Heat Transfer. Ship's Main Engine. ME Energy. Energy Reduction. System Troubleshooting. Class NK certified Engine Room Simulator.
Ship Engine Room Simulator Electrical Systems IMO STCW 2010 Model Course 2.07, with High Voltage Training, IMO STCW Appendix-A (2/2) Table A-III/6
Effect of Draft Change in the Ship Main Engine Performance Parameters IMO Model Course 2.07, IMO, STCW 2010, Management Level Training Exercices, Marine Engineering Education and Training, Maritime. GDS Engineering R&D, SERS, Trademark
Ship Engine Room Simulator ERS Bow Thrustor IMO STCW 2010 Model Course 2.07
Ship Electrical Systems Engine Room Simulator Sample GUI Screens IMO STCW 2010 Containership
Ship Engine Room Simulator Compressed Air System Electrical Systems IMO STCW 2010 Model Course 2.07
Ship Engine Room Simulator Circuit Breakers Electrical Systems IMO STCW 2010 Model Course 2.07
Ship Engine Room Simulator TM
SERS Main GUI - Industry Maritime 4.0 Digital Twin Example
Line Up - ME Fresh Water Cooling System IMO STCW 2010 Training
ERS-Manifolds-and-Turbochargers-of-Main-Engine
Energy Management Exercise with GDS Ship ERS (SERS) iaw IMO Model Course 2.07 - Figure01
Ship Engine Room Simulator Electrical Systems IMO STCW 2010 Model Course 2.07 (1)
GDS Ship ERS Effect of Draft Change on ME Parameters Fig02
Ship Engine Room Simulator ERS Bow Thrustor IMO STCW 2010 Model Course 2.07
Ship Engine Room Simulator Sample GUI Screens IMO STCW 2010 Containership
Ship Engine Room Simulator Compressed Air System Electrical Systems IMO STCW 2010 Model Course 2.07
Ship Engine Room Simulator Circuit Breakers Electrical Systems IMO STCW 2010 Model Course 2.07
previous arrow
next arrow
Global Dynamic Systems. GDS Systems Engineering Training Programs. Simulators. Engine Room Simulator (ERS). Ship. Electrical Systems Simulator. Physics Lab. UH60. Amphibious. Ground Vehicles. Military Training Programs. MIL-STD-810H Online Training. Environmental Testing of Military Products. Training helps reduce your design and operational risks. We provide MIL-STD-810H, RTCA-DO-160, Vibration and Shock, FAA Requirements Management courses. by Dr Ismail Cicek and a CVE certified by EASA. Ship Engine Room Simulator (ERS) SERS GDS Engineering R&D IMO STCW 2010, Engine Performance, Main Diesel Engine, Marine, Maritime, IMO Model Course 2.07. Certified by Class NK. ITU Maritime Faculty. Yıldız Technical University. Competencies. Operation and Management Level. Education and Training. Assessment of Marine Engineers. Troubleshooting with Fault Tree Scnearious and Analysis Reporting. Maritime. Marine Engineering. San Antonio, Texas, Dayton, OH. WPAFB.

GDS Engine Room Simulator: Our Customers and Collaborations

References of GDS Simulator Users
&
Solution Partners
in
Maritime Training and Research

Engine Room Simulator (ERS). Ship Engine Room Simulator. IMO STCW 2010 Training. Marine Engineering Cadets. Maritime. IMO Model Course 2.07. Online Training. COVID-19. Certified by Class NK, IACS Member. Maritime Education and Training (MET)Engine Room Simulator (ERS). Ship Engine Room Simulator. IMO STCW 2010 Training. Marine Engineering Cadets. Maritime. IMO Model Course 2.07. Online Training. COVID-19. Certified by Class NK, IACS Member. Maritime Education and Training (MET). Containership. Yacht Taining. Tanker Personnel.Engine Room Simulator (ERS). Ship Engine Room Simulator. IMO STCW 2010 Training. Marine Engineering Cadets. Maritime. IMO Model Course 2.07. Online Training. COVID-19. Certified by Class NK, IACS Member. Maritime Education and Training (MET). Containership. Yacht Taining. Tanker Personnel.
tülomsaş, R&D study, Milli Dizel Motoru Çalışması, ARGE, TÜBİTAK, Dizel Motorlarda Verimlilik, İTÜAkademi Maritim Penjana ilmuNorth Star Enterprise Bangladesh
Engine Room Simulator (ERS). Ship Engine Room Simulator. IMO STCW 2010 Training. Marine Engineering Cadets. Maritime. IMO Model Course 2.07. Online Training. COVID-19. Certified by Class NK, IACS Member. Maritime Education and Training (MET). Containership. Yacht Taining. Tanker Personnel.Engine Room Simulator (ERS). Ship Engine Room Simulator. IMO STCW 2010 Training. Marine Engineering Cadets. Maritime. IMO Model Course 2.07. Online Training. COVID-19. Certified by Class NK, IACS Member. Maritime Education and Training (MET). Containership. Yacht Taining. Tanker Personnel.
Engine Room Simulator (ERS). Ship Engine Room Simulator. IMO STCW 2010 Training. Marine Engineering Cadets. Maritime. IMO Model Course 2.07. Online Training. COVID-19. Certified by Class NK, IACS Member. Maritime Education and Training (MET). Containership. Yacht Taining. Tanker Personnel.tuzeks gds Engine Room Simulator (ERS) Engine Tests, Vibration Testing, Consultancy, KOSGEB Project
Simulator Studies in Cooperation between SDT and GDS Engineering R&DMILPER, Project Studies with Dr Ismail Cicek 2012-2014, Maritime Propeller R&D, Development and Testing
Karpowership logo - GDS Engineering R&D Services Karadeniz Holding

GDS ERS meets both IMO STCW 2010 Competency/Training Requirements and IMO Model Course 2.07 Exercise Requirements

Click here to read all details…

Highlights of the GDS Engine Room Simulator:
  • Certified for use in training and education of marine engineering cadets.
  • Certified by ClassNK, a Japanese Classification Society. Class NK is an official member of IACS.
  • Certification includes IMO STCW 2010 (with Manila Amendments)
  • Certification type is Full Mission (Class A) type approval.
  • Certification includes IMO Model Course 2.07 (2017 Edition).
  • Applicable for Remote (Online) Training
  • Provides two types of mostly used engine modes.
  • Simulates all engine room machinery and systems with more than 50 GUI Panels.
  • Satisfies the High Voltage Training requirements.
  • Includes Environmental Pollution modules, such as Ballast Water Treamen, Oily Water Separator, ME Denoxification System, and others.
  • Includes Energy Efficiency modules. Students can compare theoretical studies against the simulator instances using Sunken Diagrams.
  • Includes engine performance monitoring tools. Students are able to compare the current values againt the baselined ship’s navigation test as well as main engine’s factory test data. The baselined test data are presented within the software to the students with graphs. This our unique approach is to actually duplicate the real world work environment of wachkeeping engineers checking the parameters against the user manuals and engine books with test data.
  • Provides a realistic environment for emergency operations with all required systems.

Communıcate wıth us
@admin
info@GlobalDynamicSystems.com