Yenilenebilir Enerji Kaynakları ile Sıfır Emisyonlu Yat Tasarımı ve Simülasyonları

Research Article: “Yenilenebilir Enerji Kaynakları ile Sıfır Emisyonlu bir Yelkenli Tekne Tasarımı ve Seyir Simülasyonları”

Reference:

Nomak, H. S. & Cicek, I. (2022). Yenilenebilir Enerji Kaynakları ile Sıfır Emisyonlu bir Yelkenli Tekne Tasarımı ve Seyir Simülasyonları . Çevre İklim ve Sürdürülebilirlik , 1 (1) , 41-54 . Retrieved from https://dergipark.org.tr/en/pub/itucis/issue/68628/1050691.

Özet

Mevcut bir yelkenli deniz aracının karbon salınımı yapan sistemleri incelenmiş, tekne performans değerleri belirlenmiş ve “sıfır emisyon” hedefi ile yelkenli deniz aracına entegre yenilenebilir enerji sistemleri ve tasarım değişiklikleri çalışılmıştır. Gerçek meteorolojik şartlar ve işletim senaryoları ile enerji üretimi, depolanması ve tüketimi simülasyon analizleri ile gösterilmiştir. Yenilenebilir enerji üretim birimleri iki kaynak grubu olarak değerlendirilmiştir. İlk grupta, statik enerji üretim sistemleri olarak adlandırılan ve teknenin seyir, demirde bekleme veya limanda bağlı iken enerji üretebilen sistemleri içermektedir. Bu kısımda güneş enerji panelleri ile iki rüzgâr türbini tasarımda kullanılmıştır. Dinamik enerji üretim sistemleri olarak adlandırdığımız ikinci guruptaki birimler, teknenin yelkenli seyri esnasında su akışı enerjisinden faydalanmak amacıyladır. Bunlar, iki adet su türbini ile itici ve aynı zamanda enerji üretici birimi olarak da çalışabilen bir elektrik motorunu içermektedir. Her bir enerji üretim sistemi tasarımları performans ve 3-boyutlu yerleşim bakımından değerlendirilmiştir.

Önerilen sistemin doğrulaması üç ayrı senaryo analizi ile gerçekleştirilmiştir. İlk iki senaryo ile Marmara denizinde tipik yelkenli tekne operasyonlarının yapılabildiği gösterilmiştir. Üçüncü senaryo olan acil durum senaryosu ile gün içerisinde, rüzgar şiddeti sıfır iken ve tamamen dolu bataryalar ile, seyir senaryosu programı yürütülmüş ve bataryaların %35 enerji kullandığı hesaplanmıştır. Bu senaryo çalışmaları ile normal yat tipi bir teknenin tüm operasyonlarının tasarımı çalışılan yenilenebilir enerji kaynakları ile karşılandığı gösterilmiştir. Teknenin tüm operasyonlarında karadan elektrik bağlantısı gerekmediği gösterilmiştir.

Abstract

The carbon emission systems of an existing sailing vessel were examined, the boat performance values were determined, and additional renewable energy systems and design changes were studied for obtaining “zero emission”. Real meteorological conditions and operating scenarios have been determined and accordingly, energy production, storage and consumption have been demonstrated by simulations. Renewable energy production units are evaluated as two resource groups. In the first group, there are systems called static energy generation systems and that can generate energy both while the boat is underway, at anchor or in port. In this section, solar energy panels and two wind turbines are evaluated in the design. These units, called dynamic energy generation systems, are intended to benefit from the energy of the water flow during the sailing of the boat. These include two water turbines and an electric motor that can act as a propulsion and also an energy generating unit. Each power generation system has been evaluated for both performance and 3-dimensional positioning.

The verification of the proposed system was carried out with three different scenario analyzes. With the first two scenarios, it has been shown that typical sailboat operations can be performed in the Sea of Marmara. With the third “emergency scenario”, a navigation program was developed and simulated during the day, when the wind speed was zero and with fully charged batteries, and it was calculated that only 35% of battery energy was used. With these scenario studies, it has been shown that all operations of a normal yacht are covered by the renewable energy sources studied. It has been shown that no shore connection is required in any boat operation.

Geleneksel yelkenli yat tipi mevcut teknenin bir yan görünümü.

Keywords: Marine Vehicles, Zero Emission, Renewable Energy Resources, Propulsion System, Water Turbines.

Şekil: Türbinlerin ve diğer enerji kaynaklarının tekne üzerindeki konumu: Yan görünüm.

Link for the full manuscript: https://dergipark.org.tr/en/pub/itucis/issue/68628/105069.

Underwater Radiated Noise and Sealife. Powerships and noise emittance. maritime studies

Terrestial and Underwater Radiated Noise from Powerships: Testing and Evaluation

The increase in shipping activity globally has resulted in an increased awareness of impacts on the marine environment. Effects of noise pollution, especially on marine life, have become highly prominent. Marine life is extremely sensitive to noise pollution. Due to their extreme reliance on underwater sounds for basic life functions like searching for food and mate and an absence of any mechanism to safeguard them against it, underwater noise pollution disrupts marine life (Singla, 2020). In short, marine animals depend on sound to live, making and listening to it in various ways to perform various life functions (US Bureau of Ocean Energy Management, 2014).

Noise travels much more in water, covering greater distances than it would do on land while travelling through air. Underwater sound has both pressure and particle motion components and hearing can be defined as the relative contribution of each of these sound components to auditory detection (Popper AN, 2011). Sounds radiated from ships are among the underwater noise sources. Among shipborne Underwater Radiated Noise (URN) sources are the following:

  • Propeller’s rotational turn and the blades hitting to water flow lines
  • Propeller’s cavitation
  • Ship hull structure’s interaction water (fluid-structure interaction)
  • Mechanical noises from onboard machinery
Underwater Radiated Noise and Sealife. Powerships and noise emittance. maritime studies
Diagram Illustrating Three Significant Paths of Underwater Noise Generation from Machinery (NCE Report 07-001, 2007).

Click here to read the report generated by NCE (NCE Report 07-001, 2007)

All of these noise sources are radiated to underwater from ships, especially when the ship speed is at higher rates, i.e. above 15 knots.

When a Powership is considered, out of the 4 aforementioned noises, only mechanical noise sources are of concern as there are no noises that emanate from the other three sources because the Powership is docked. Mechanical onboard noises are still of concern and therefore need to be evaluated and tested for the assessment of their potential negative effects to marine life.

GDS Engineering R&D has the capability for measuring the underwater radiated noise and assessment of the results based on the effect to the sealife in the region.

References of GDS Simulator Users
&
Solution Partners
in
Maritime Training and Research

Engine Room Simulator (ERS). Ship Engine Room Simulator. IMO STCW 2010 Training. Marine Engineering Cadets. Maritime. IMO Model Course 2.07. Online Training. COVID-19. Certified by Class NK, IACS Member. Maritime Education and Training (MET)Engine Room Simulator (ERS). Ship Engine Room Simulator. IMO STCW 2010 Training. Marine Engineering Cadets. Maritime. IMO Model Course 2.07. Online Training. COVID-19. Certified by Class NK, IACS Member. Maritime Education and Training (MET). Containership. Yacht Taining. Tanker Personnel.Engine Room Simulator (ERS). Ship Engine Room Simulator. IMO STCW 2010 Training. Marine Engineering Cadets. Maritime. IMO Model Course 2.07. Online Training. COVID-19. Certified by Class NK, IACS Member. Maritime Education and Training (MET). Containership. Yacht Taining. Tanker Personnel.
tülomsaş, R&D study, Milli Dizel Motoru Çalışması, ARGE, TÜBİTAK, Dizel Motorlarda Verimlilik, İTÜAkademi Maritim Penjana ilmuNorth Star Enterprise Bangladesh
Engine Room Simulator (ERS). Ship Engine Room Simulator. IMO STCW 2010 Training. Marine Engineering Cadets. Maritime. IMO Model Course 2.07. Online Training. COVID-19. Certified by Class NK, IACS Member. Maritime Education and Training (MET). Containership. Yacht Taining. Tanker Personnel.Engine Room Simulator (ERS). Ship Engine Room Simulator. IMO STCW 2010 Training. Marine Engineering Cadets. Maritime. IMO Model Course 2.07. Online Training. COVID-19. Certified by Class NK, IACS Member. Maritime Education and Training (MET). Containership. Yacht Taining. Tanker Personnel.
Engine Room Simulator (ERS). Ship Engine Room Simulator. IMO STCW 2010 Training. Marine Engineering Cadets. Maritime. IMO Model Course 2.07. Online Training. COVID-19. Certified by Class NK, IACS Member. Maritime Education and Training (MET). Containership. Yacht Taining. Tanker Personnel.tuzeks gds Engine Room Simulator (ERS) Engine Tests, Vibration Testing, Consultancy, KOSGEB Project
Simulator Studies in Cooperation between SDT and GDS Engineering R&DMILPER, Project Studies with Dr Ismail Cicek 2012-2014, Maritime Propeller R&D, Development and Testing
Karpowership logo - GDS Engineering R&D Services Karadeniz Holding
GDS Systems Engineering Training Programs. Online Training. Training helps reduce your design and operational risks. We provide MIL-STD-810H, RTCA-DO-160, Vibration and Shock, FAA Requirements Management courses. by Dr Ismail Cicek and a CVE certified by EASA. Tailoring of the MIL-STD-810H test methods and procedures. EUT. Equipment Under Test. Online Classes. US based intructor. US DOD. EASA. FAA. NASA. Miliary Stanrdards. Askeri Test Standartları. Çevresel Test Standart Eğitimi. Eğitim. Acceleration Testing. Aircraft Systems. RTCA-DO-160. Crash Hazard. Korozyon Testleri. Corrosion Tests. Environmental Testing of Products, provided by GDS Engineering R&D, Systems Engineering Products and Solutions. Dr. Ismail Cicek. Product Verification and Validation Courses for Integrated Systems. C-17 Military Aicraft. FAA/EASA. US DoD. Safety First. US Army. US Air Force and US Navy Tailoring Examples for Mission and Environmental Profile. Setting Test Limits and Durations are Explained. How to evaluate test results and mitigate the risk (Risk Assessment Matrix). Aircafft Equipment, Devices, Plugs, Machinary, Engines, Compressors, or Carry-on. European CE Time Schedule. DOT/FAA/AR-08/32. Requirements Engineering Management Handbook. U.S. Department of Transportation Federal Aviation Administration. Tailoring Guidance. Tailoring per MIL-STD-810H Testing. Tailoring for MIL-STD-810H Testing. MIL-STD-810H Tailoring Examples.

MIL-STD-810H Training: “Tailoring is Essential”

MIL-STD-810H, US DOD Test Standard, starts with an important phrase at the beginning paragraph of each of the 28 test methods: “Tailoring is Essential.” It is therefore crucial to understand what this means and how to tailor the test methods for specific equipment, considering the platform, mission, and environmental requirements.

GDS Engineering R&D provides MIL-STD-810H training online or onsite. Performing operations in various parts of the world, we have been providing this course to the defence industry strategists, leaders, program managers, projects managers, designers, and test engineers for more than 10 years. With long years of background in test projects in the USA and Turkey, Dr. Cicek, the main lecturer of this training, explains the tailoring concepts with specific examples.

This course provides with information and knowledge of experience on how to develop Concepts of Operations (CONOPS) document and Lice Cycle Environmental Profile (LCEP) to derive operational therefore test requirements for the Equipment Under Test (EUT). Understading the tailoring part of MIL-STD-810H is probably the most important aspect of this test standard training, due to the following reasons:

  • Developing a test plan for MIL-STD-810H equipment testing might be a confusing and time consuming process.
  • Training will provide an understanding into why and when CONOPS document is needed and how test requirements are established along with Mission and Environmental profiles of the EUT. These are all covered by both presentations and specific product examples through discussions during the training sessions.
  • In test method discussions, the instructor discuss “what items” (i.e. test levels) and “how” they will be tailored with specific examples.

Test methods, i.e. temperature, humidity, temperature shock, require mission and environmental profiles are established for successfully determining the test levels, durations, and criteria for pass or fail.

Consider the following for tailoring

A Generalized Task Statement for Tailoring: Condider the environmental effects. An example list is provided with a list below. Develop exposure curves considering exposure scenarios. For this, use/develop CONOPS document and generate a Life Cycle Environmental Profile (LCEP).

  • Environmental effects (temperature, humidity, icing, etc.) to the equipment in different operational modes: i.e. transportation, operation, and stand-by. Condider these effects with scenarious and develop exposure curves.
  • Equipment vulnarabilities under the environmental/operational conditions.
  • Effects caused by the platform operations (vibrations, shock, etc.)
  • The effect due to the platform environment; various conditions in the section the equipment will be operating. For example, the equipment might be exposed to fluid contamination in the section where it will be installed.
  • Equipment’s effect to the environment and systems (EMI, vibrations, fluid contamination, fire and flammability, etc.)
  • Consider risks of operational breakdowns with “what if” scenarios.
GDS MIL-STD-810H Training: Scope and Contents
  • A good understanding of product testing in view of MIL-STD-810G/H and other relevant military standards.
  • Overview of Systems Engineering, V&V, and Concepts of Operations (CONOPS) document.
  • Establishment of Test Requirements and Test Plans.
  • Test Procedures, Scheduling, Implementation, and Test Reports.
  • Tests are covered in detail per MIL-STD-810. Altitude, temperature, humidity, shock, vibration, acceleration, salt fog, explosive atmosphere, etc..
  • Some of the MIL-STD-810H test methods are covered briefly; however, we ensure all questions are answered for each test method.
  • Cases studies, sample reports and discussions on issues.
  • Design issues and test failure discussions.
  • Risk management for test results and acceptance criteria.
  • Design Recommendations.

Read more information in our MIL-STD-810H Training pages.

GDS Systems Engineering V&V Training Courses
Event Calendar

We announce upcoming training on these pages. Due to COVID-19 pandemic situation, we offer only ONLINE training courses for the time being. Please communicate with us if you need a group training, which could be scheduled based on your plans and schedules.

Select the best training from below list that fits to your training needs.

Upcoming Events