Proudly completed the 3rd training for the BMC Corp. on the “Environmental Testing of Military Equipment”

Training No.3 on Environmental Testing of Military Equipment. MIL-STD-810H. Training on Military Standards.

Training No.3 on Environmental Testing of Military Equipment.

Adapazarı “BMC” Tank Palet Fabrikası 3. grup personele 2.5 gün süreli verdiğimiz “Askeri Ekipmanların Çevresel Testleri” eğitimimizi tamamladık.
Kara savunmada yıllarca görev alan personelin de olduğu bu eğitim ile faydalı olabilmekten dolayı çok memnun kaldık.
Gruptaki 3 çok tecrübeli arkadaşlarımızın kendi alanlarındaki çalışmalarda çok ciddi tecrübe kazandıklarını ve tasarım ve sistem geliştirmeye ciddi katkılarının olduğunu gözlemleyebilmiş olmaktan dolayı çok gurur duydum. Eğitim konuları hakkında detay seviye bilgi ve tecrübe alış verili yapabilmekten dolayı çok memnun olarak ayrıldık.

Dr. İsmail Çiçek

Yeni Geliştirilen SERS-T™ Tanker Modeli kullanılarak SERS™ Ürünü ile SIRE 2.0 Eğitimlerine Başlanıyor.

8 Temmuz 2023 tarihinde Yıldız Teknik Üniversitesi Gemi İnşaatı ve Denizcilik Fakültesi’nden Öğretim Üyesi Prof. Dr. Ahmet Dursun Alkan, SERS™’nin ürünü olacak Tanker Modeli SERS-T™’yi  ve İTÜ Denizcilik Fakültesine kurulmakta olan Gemi Makine Dairesi SERS™’yi görmek için ziyarete geldi.

GDS Mühendislik ARGE tarafından geliştirilen SERS™’nin geliştirildiği İTÜ Denizcilik Fakülte’ sindeki görüşmede TÜBİTAK 1501 Projesi kapsamında Tanker Tipi Gemi Personelinin SIRE 2.0 ve ISM Kod’a Göre Eğitimleri için geliştirilmekte olan SERS-T™ tanıtıldı. SERS-T™ ile birlikte Tanker Gemisine çıkacak olan denizcilerin eğitimi konusunda yeni bir sistem oluşturulacak. Tanıtım sırasında aktif olarak kullanılan SERS™’nin de tanıtımı yapıldı.

Geliştiren simülatör içerisinde Tanker gemisi makine sistemleri matematiksel olarak modellenerek, Grafik Kullanıcı Arayüzü (GUI) Panelleri Tasarımı yapılacak. Geliştirilen simülatör Tanker Gemilerinde gerekli olan SIRE 2.0 ve ISM Koda uyumlu olacak, İşletim ve Yönetim seviyesi eğitim senaryoları ile birlikte Tanker Gemisinde çalışacak olan gemi adamları eğitimlerini icra edebilecek.

Ziyarette İTÜ Denizcilik Fakültesine Kurulmakta Olan SERS™ İçin Simülatör Merkezi Gezdirildi.

SERS™’nin İTÜ Denizcilik Fakültesi’nde ön kurulumu gerçekleştirildi. GDS Mühendislik ARGE ve SimBT ile birlikte iş birliğiyle İTÜ’ye kazandırılan SERS™, Doç. Dr. Ahmet Dursun Alkan tarafından büyük beğeni kazandı. Kendisi SERS™ ve SERS-T™ için ayrıca kendi görüşlerini ve tavsiyelerini de Dr. İsmail Çiçek’e iletti.

İTÜ Denizcilik Fakültesi Simülatör Merkezi’ne kurulmakta olan SERS™, eğitim için teknolojiye ayak uyduran yapısı ve günümüz gemi modellerine hızlı adapte olması sayesinde, Türk Denizcilik okullarından İTÜ Denizcilik Fakültesi’ndeki öğrencilere eğitim verilmesini sağlayarak, sektöre bilinçli ve gemi makine dairesi hakkında bilgi sahibi denizciler yetişmesini sağlayacak.

ENO-GDS Training Calendar

Testing World

to test

ENO-GDS Training Events

Calendar is loading...
Powered by Booking Calendar


Make booking here

Online Training on RTCA-DO-160G Environmental Testing of Products, Airborne Equipmen for Platform Qualification. Provided by GDS Engineering R&D, Systems Engineering Products and Solutions. Training Led by a Live US-based Sr. Instructor: Dr. Ismail Cicek. Product Verification and Validation Courses for Integrated Systems.

Equipment Certification Process for Commercial Aircraft

FAA provides guides for exlaining the equipment process in the guide document called “THE FAA AND INDUSTRY GUIDE TO PRODUCT CERTIFICATION (CPI Guide), 3rd Ed.”. The document intends to inform the industry with the certification process to improve safety, teamwork, planning, accountability, quality, and continues improvement.

This post is to summarize the important sections of this document for an overview. The complete manuscript should be referred for formal studies and initiations.

The most important message given in this document is that the certification process requires partnership for ensuring the safety. Elements of ensuring safety is self evaluating the compliance level through Compliance Maturity and arranging partnership with FAA through the Partnership for Safety Plan as layed out in the aforementioned document.

Compliance Maturity

FAA desribes the compliance maturity as a measure of the ability of an Applicant to perform the required compliance activities with a minimum level of FAA involvement. It provides the FAA with the assurance that they can move from direct involvement on most project tasks to an oversight role. There is an expectation that Industry will embrace a compliance maturity culture of ever advancing compliance competencies.

Partnership for Safety Plan

The PSP is a written “umbrella” agreement between the FAA and the Applicant that focuses on high level objectives such as open and effective communication, key principles including effective certification programs utilizing the Project Specific Certification Plan (PSCP), designee utilization if applicable, issue resolution, continuous improvement, general expectations, and other agreements reached between the Applicant and the
FAA that further Applicant maturity.

The PSP also helps define the general discipline and methodology to be used in planning and administering certification projects using appropriate procedures. Although the stated procedures are not required, the procedures provide a means to help the Holder/Applicant move toward a more systematic process for conducting projects that the FAA can rely on without having to do direct oversight of the projects.

Partnership for Safety Plan is an umbrella agreement that covers the following specific activity areas:

  • Continued Operational Safety
  • Project Specific Certification Plan
  • Risk Based Level of Project Involvement
  • Continuous Improvement
  • Issues Resolution Process
  • Other as defined by the PSP

Project Specific Certification Plan (PSCP)

Developed based on the needs of the project as defined in paragraph 2-3.d of FAA Order 8110.4, the PSCP must provide clarity for how the Applicant will comply with the regulations. The PSCP is a key tool in meeting the 14 CFR part 21 requirements for the certification and approval of a product.

Test Standard: RTCA-DO-160G

RTCA-DO-160G is the current test standard version to use for equipment certification testing. Everything airborne from small general aviation aircraft and rotary aircraft to large airliners and transport planes must go through DO-160 testing. The DO-160 standard and the EUROCAE ED-14 standard are identically worded. DO-160 standard procedures van be used in either FAA or EASA certification projects. The catergories, procedures, and test parameters are derived from FAA regulations and for most of the procedures there is a direct reference.

DO-160 testing involves a wide range of factors, from humidity and temperature to electrical interference and shock resistance. The standard is intended to cover almost anything that can disrupt the performance of an airborne electrical or electronic device. By undergoing the certification and testing process, a DO-160 compliant device can deliver reliable and accurate operation in any flight condition.

GDS Engineering R&D provides training on the RTCA-DO-160G testing. Part 21 process and all tests in DO-160 are covered in this short two and a half day training.

GDS Systems Engineering V&V Training Courses
Event Calendar

We announce upcoming training on these pages. Due to COVID-19 pandemic situation, we offer only ONLINE training courses for the time being. Please communicate with us if you need a group training, which could be scheduled based on your plans and schedules.

Select the best training from below list that fits to your training needs.

Upcoming Events


RTCA, Inc Logo

GDS Engineering R&D, Inc. is an official member of RTCA Organization

GDS Engineering R&D joined and became an official member of RTCA Organization on 27 January 2022.

RTCA creates the venue for collaboration, consensus, and government/industry partnerships on the performance standards development process. The members of RTCA are from organizations, entities, and governments from across the globe including aircraft and avionics manufacturing, service providers, R&D, academia, UAS and more. RTCA is creating and sustaining partnerships and being part of this we hope that GDS will also play important roles in shaping the future aviation system.

As a member organization of RTCA, Inc. GDS Engineering, Inc. can now be involved with the aviation industry and government professionals who are building consensus today on the electronic and telecommunication issues of tomorrow’s aviation. That consensus forms the recommendations for policy, procedural and equipment standards that will affect the way we all do business in the worldwide aviation community.

As a member of RTCA, GDS Engineering,Inc. is entitled to substantial benefits to the way we do business in aviation. RTCA members receive complimentary access to documents, the opportunity to participate on committees, discounts on training and events and more.

GDS Systems Engineering V&V Training Courses
Event Calendar

We announce upcoming training on these pages. Due to COVID-19 pandemic situation, we offer only ONLINE training courses for the time being. Please communicate with us if you need a group training, which could be scheduled based on your plans and schedules.

Select the best training from below list that fits to your training needs.

Upcoming Events


We are glad that we are now part of the RTCA group of organizations.

Ship Engine Room Simulator (ERS) SERS GDS Engineering R&D IMO STCW 2010, Engine Performance, Main Diesel Engine, Marine, Maritime, IMO Model Course 2.07. Certified by ClassNK. ITU Maritime Faculty. Yıldız Technical University. Competencies. Operation and Management Level. Education and Training. Assessment of Marine Engineers. Troubleshooting with Fault Tree Scnearious and Analysis Reporting. Objective Assessment. Nippon Kaiji Kyokai.High Voltage Training Functions 6600 VAC. Ship Propulsion Systems. Maritime Education and Training. Main Engine Performance. Sunken Diagrams. Energy Efficiency. Marine Engineering. Effect of Draft Change in the Ship Main Engine Performance Parameters. Management Level Training Exercices, Marine Engineering Education and Training. SERS Trademark

Capture GDS Vision in the Engine Room Simulator Development

GDS Engineering R&D is a research and development company, established by the academicians employed at Istanbul Technical University Maritime Faculty, Tuzla, Istanbul. GDS SERS Development Team has been utilizing engine room simulators since 2001, every year for training of marine engineering students with the following two engineering courses:

ERS I Operational Level Simulator Course: This course is for STCW Operational Level Proficiency Training after completing other Operational Level Courses at 4-year-university level. It is 4 hrs a week continuing for 14 weeks per semester. Each student must take this course to be eligible for long term training onboard a ship.

ERS II Management level Simulator Course: This course is to satisfy the proficiency levels for Management Level. It is 3 hours for 14 weeks and each student must complete the onboard training and then after completing this class for graduation.

Effect of Draft Change in the Ship Main Engine Performance Parameters IMO Model Course 2.07, IMO, STCW 2010, Management Level Training Exercices, Marine Engineering Education and Training, Maritime. GDS Engineering R&D, SERS, Trademark

Through using simulators in both of these courses since 2001, we gained a good level of expertise on the use of simulators in Maritime Education & Training. Our team has also provided Training of Trainers courses IMO Model Courses 6.09 and 6.10. Some of our team members provided on site training at other Turkish institutions and became experienced on using simulators developed by various manufacturers.

Experienced in academic, engineering, and simulator courses, we have started describing a new simulator, aiming to provide an engine room simulator with the following important characteristics:

  • Reduction of Learning Time of the Software to Focus on Engine Room Systems Training:
    • Having different mouse key assignments or keyboard shortcuts in a simulator for various software functions and controls make the software much more complex to use and that affect the training objectives negatively. Therefore;
    • SERS provide a much less complex user interface allowing trainees focus on the professional tasks for “running the engine room systems” rather than “running the simulator.”
    • All GUI panels are easily displayed or closed:

“1-Click” Approach for ease of use:

  • All sysems are operated with a left mouse click.
  • All software functions are activated with a left mouse click.
  • All selections are made with a left mouse click.
  • No hidden functions or keys to use for activating a specific panel.

Fidelity and Realism

    • Having a more accurate approach on how to display and how to operate the systems and components.
    • Realistic functionality of pumps, compressors, engines, etc. with mathematical modeling reflecting the realistic time durations and process dynamics.
    • Realistic remote and local control for the pumps and compressors.
    • Realistic graphical user interface for electrical system (Circuit Breakers, Remote Panels, Synchronization Panel, etc.)
    • Piping and Instrumentation Diagram (P&ID) objects, such as valves, are designed and shown in accordance with the respective international standards. Also, real engine rooms are studied to understand and display the controls, valves, and similar objects with a more understandable object design.
    • Pipe colors are selected to fit to the international standards. This provides a more comprehensive maritime education approach and ensures enough practice opportunity for diagram reading in the real engine room.
    • Components are created with various drawing and design software packages, then they are animated for better understanding, and better on-off state indications. For example, trainee could understand a pump is turning and could see there is a flow in a pipe with both color change and observed parameters.
    • Enough/necessary parameters displayed to understand the engineering principles.
    • Emphasis on Safety Systems (CO2 Fixed Fire Installation system is included as a separate panel)
    • Emphasis on Upcoming Regulations or Technology (Inclusion of ME Denoxification system as a separate panel).
    • Basic sounds (alarms and engine sounds) are implemented. Alarms are implemented appropriately as in the real environment with SILENCE, ACKNOWLEDGE and RESET buttons.

Unique Assessment Features

SERS provides direct evaluation methods with objective evidence of training with the following training outputs:

  • A text based training report generated for each trainee for each training session.
  • Screen captures generated for each user action and recorded in a historic time order, allowing to monitor and display the complete flow of the trainee actions.
  • Instructor monitoring and reaction time display and record for each trainee.
  • Trainee tools to easily record and maintain the training records.
  • More Accurate Philosphy is developed for use of SERS for a more Efficient and Realistic “Team Management” Training
    • “Repeating all functions in distributed computers” approach cause students tend to complete all training functions from one computer only. However;
    • SERS architecture allow for distributing panels to different units without repeating. Student must complete the task from its designated location.